期刊文献+
共找到93篇文章
< 1 2 5 >
每页显示 20 50 100
纤维肌痛综合征生物标记物的筛选及免疫细胞浸润分析
1
作者 刘雅妮 杨静欢 +5 位作者 陆慧慧 易玉芳 李智翔 欧阳福 吴璟莉 魏兵 《中国组织工程研究》 CAS 北大核心 2025年第5期1091-1100,共10页
背景:纤维肌痛综合征作为常见风湿病,其发病与中枢敏化及免疫异常有关,但具体过程尚未阐明,缺乏特异性诊断标志物,不断探索该病的发病机制具有重要的临床意义。目的:基于加权基因共表达网络分析(WGCNA)等生物信息学方法和机器学习算法... 背景:纤维肌痛综合征作为常见风湿病,其发病与中枢敏化及免疫异常有关,但具体过程尚未阐明,缺乏特异性诊断标志物,不断探索该病的发病机制具有重要的临床意义。目的:基于加权基因共表达网络分析(WGCNA)等生物信息学方法和机器学习算法筛选纤维肌痛综合征潜在的诊断相关标志基因,并分析其免疫细胞浸润特征。方法:对来自基因表达综合数据库(GEO)的纤维肌痛综合征数据集转录谱进行差异分析和WGCNA分析,整合筛选出差异共表达基因,进一步采用机器学习套索回归(LASSO)算法、支持向量机递归特征消除(SVM-RFE)机器学习算法来识别核心生物标志物,并绘制受试者工作特征(ROC)曲线以评估诊断价值。最后,采用单样本基因集富集分析(ssGSEA)和基因集富集分析(GSEA)评估纤维肌痛综合征的免疫细胞浸润情况及通路富集。结果与结论:①对GSE67311数据集按照log2|(FC)|>0,P<0.05的条件进行差异分析后获得8个下调的差异表达基因;进行WGCNA分析后获得正相关性最高(r=0.22,P=0.04)的模块(MEdarkviolet)内含基因497个,负相关性最高(r=-0.41,P=6×10-5)的模块(MEsalmon2)内含基因19个;将差异表达基因与WGCNA的2个高相关性模块基因取交集,获得7个基因。②对上述7个基因进行LASSO回归算法筛选出4个基因,进行SVM-RFE机器学习算法筛选出5个基因,两者取交集后确定了3个核心基因,分别为重组1号染色体开放阅读框150蛋白(germinal center associated signaling and motility like,GCSAML)、整合素β8(Integrin beta-8,ITGB8)和羧肽酶A3(carboxypeptidase A3,CPA3);绘制3个核心基因的ROC曲线下面积分别为0.744,0.739,0.734,提示均具有很好的诊断价值,可作为纤维肌痛综合征的生物标志物。③免疫浸润分析结果显示,与对照组相比纤维肌痛综合征患者记忆B细胞、CD56 bright NK细胞和肥大细胞显著下调(P<0.05),且与上述3个生物标志物显著正相关(P<0.05)。④富集分析结果提示,纤维肌痛综合征的富集途径包括9条,主要与嗅觉传导、神经活性配体-受体相互作用及感染等通路密切相关。⑤上述结果显示,纤维肌痛综合征的发生发展与多基因参与、免疫调节异常及多个通路失调有关,但这些基因与免疫细胞之间的相互作用,以及它们与各通路之间的关系尚需进一步研究。 展开更多
关键词 纤维肌痛综合征 生物信息学 机器学习 免疫浸润 加权基因共表达网络分析 套索回归 支持向量机递归特征消除算法 单样本基因集富集分析 基因集富集分析
下载PDF
基于LASSO回归的宁夏回族自治区不同学段儿童青少年近视影响因素分析 被引量:1
2
作者 谢小莲 陈启 +4 位作者 李静 马娟 王飞 赵海萍 曹娟 《眼科新进展》 CAS 北大核心 2024年第7期549-553,共5页
目的分析宁夏回族自治区儿童青少年近视流行现状、影响因素及不同学段间的差异。方法采用分层整群随机抽样的方法,于2019年9月至12月,在宁夏回族自治区银川市、吴忠市、石嘴山市、固原市和中卫市,随机抽取8所小学、6所初中、6所高中、4... 目的分析宁夏回族自治区儿童青少年近视流行现状、影响因素及不同学段间的差异。方法采用分层整群随机抽样的方法,于2019年9月至12月,在宁夏回族自治区银川市、吴忠市、石嘴山市、固原市和中卫市,随机抽取8所小学、6所初中、6所高中、4所大学的学生为研究对象,小学每个年级抽取5个班级,初中至大学每个年级抽取4个班级,以抽取班级的全体学生作为研究对象,共抽取学生14211人,对其进行问卷调查、体格检查和视力测量。不同学段儿童近视的影响因素采用最小绝对收缩和选择算子(LASSO)联合Logistic回归进行分析,选择贝叶斯信息准则(Bayesian information criterion,BIC)最小的模型为最优模型。结果宁夏回族自治区儿童青少年近视检出率为70.3%,女生高于男生,城市高于乡镇,差异均有统计学意义(均为P<0.001);按学段分层后,随着年级的增加,近视检出率随之升高,小学最低,大学最高,不同学段近视检出率差异有统计学意义(P<0.001)。近视影响因素的LASSO-Logistic回归分析表明,城乡、性别、年龄、目前是否配戴眼镜、每日课间操节数、是否积极参加体力活动和过去6个月是否保持规律活动是小学生近视的影响因素(均为P<0.05);性别、目前是否配戴眼镜是初中生和高中生近视的影响因素(均为P<0.05);目前是否配戴眼镜是大学生近视的影响因素(P<0.05)。结论宁夏回族自治区儿童青少年近视检出率高,不同学段儿童青少年近视影响因素差异明显。配戴眼镜是控制近视的保护因素。应根据儿童青少年所处学段开展有针对性的视力相关知识的健康教育,增强其健康保健意识,提高儿童青少年视力。 展开更多
关键词 近视 学段 儿童青少年 LASSO回归
下载PDF
基于X线的纹理分析在诊断跟距联合畸形中的临床应用价值
3
作者 郝海凤 张卜天 +3 位作者 滕佩宏 祖莅惠 刘畅 刘桂锋 《中国实验诊断学》 2024年第9期1021-1025,共5页
目的构建跟距联合畸形(talocalcaneal coalition)的X线影像组学模型,并检验其对跟距联合畸形的筛查诊断能力。方法回顾性分析2019年1月至2023年3月吉林大学中日联谊医院放射线科200例行踝关节或足部X线检查的患者临床放射资料(跟距联合... 目的构建跟距联合畸形(talocalcaneal coalition)的X线影像组学模型,并检验其对跟距联合畸形的筛查诊断能力。方法回顾性分析2019年1月至2023年3月吉林大学中日联谊医院放射线科200例行踝关节或足部X线检查的患者临床放射资料(跟距联合阳性及阴性各100例),手动勾画跟距联合畸形所在影像学区域,基于Python-pyradiomics库初步提取影像组学特征,通过曼-惠特尼U检验及最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)算法实现数据降维和特征筛选,用支持向量机(support vector machine,SVM)对筛选得到的影像组学特征分类建模,最终以受试者工作特征(receiver operating characteristic,ROC)曲线的曲线下面积(area under the curve,AUC)、精确度、召回率、敏感度、特异度及F1分数评价模型的诊断效能。结果从X线图像中初步提取到105个组学特征,经曼-惠特尼U检验及LASSO算法筛选出7个强相关性特征,最终以SVM分类器所构建模型的测试集AUC值为0.93,精确度、召回率、敏感度、特异度和F1分数分别为88%、85%、93%、92%、88%,对跟距联合畸形有良好的筛查诊断能力。结论基于X线的影像组学模型可作为筛查诊断跟距联合畸形的一种准确高效的无创性工具,帮助临床医师诊断跟距联合畸形。 展开更多
关键词 跟距联合畸形 影像组学 X线成像 最小绝对收缩和选择算子 支持向量机
下载PDF
高尿酸血症与慢性肺源性心脏病的相关性研究:基于LASSO回归与倾向性评分匹配法
4
作者 祁海燕 王捷 +1 位作者 罗玉玺 武云 《中国全科医学》 CAS 北大核心 2024年第24期2954-2960,2968,共8页
背景近年来众多研究表明高尿酸血症(HUA)是某些疾病的影响因素,然而HUA是否为慢性肺源性心脏病(CPHD)的影响因素仍需进一步研究。目的探讨HUA与CPHD的相关性,旨在为CPHD患者血尿酸(SUA)水平的管理提供理论依据。方法纳入2019—2023年新... 背景近年来众多研究表明高尿酸血症(HUA)是某些疾病的影响因素,然而HUA是否为慢性肺源性心脏病(CPHD)的影响因素仍需进一步研究。目的探讨HUA与CPHD的相关性,旨在为CPHD患者血尿酸(SUA)水平的管理提供理论依据。方法纳入2019—2023年新疆医科大学第一附属医院收治的1171例慢性阻塞性肺疾病(COPD)患者为研究对象,根据其是否患有CPHD分为CPHD组(470例)和COPD组(701例)。收集患者一般资料和实验室检查及超声心动图检查结果。采用LASSO回归法对变量进行筛选,采用倾向性评分匹配法(PSM)排除混杂因素影响。采用多因素Logistic回归分析探究COPD患者合并CPHD的影响因素。结果CPHD组女性、汉族、吸烟、饮酒、特发性肺纤维化、慢性支气管炎、支气管哮喘比例、淋巴细胞百分比、左心室舒张末期内径、左心室收缩末期内径、心输出量、左心室射血分数低于COPD组,心功能3~4级、HUA、肺栓塞、先天性心脏病比例、红细胞计数、中性粒细胞百分比、SUA、血尿素氮、D-二聚体、N末端-B型利钠肽前体、右心房内径、右心室内径、左心房内径、右心室流出道内径、肺动脉内径高于COPD组,差异有统计学意义(P<0.05)。LASSO回归筛选出变量后进行PSM,最终得到COPD组469例、CPHD组469例。匹配后CPHD组心功能3~4级、HUA占比、右心房内径、右心室内径、右心室流出道内径、肺动脉内径大于COPD组,支气管哮喘、淋巴细胞百分比低于COPD组,差异有统计学意义(P<0.05)。多因素Logistic回归分析结果显示,HUA升高、心功能3~4级、右心房内径、右心室内径、肺动脉内径增加是COPD患者合并CPHD的危险因素(P<0.05),患有支气管哮喘、左心室舒张末期内径增加为COPD患者合并CPHD的保护因素(P<0.05)。将SUA水平按四分位数分层,多因素Logistic回归分析结果显示,与Q1(SUA<237.31μmol/L)比较,Q4(SUA>381.29μmol/L)患者患有CPHD的风险增加1.421倍。结论HUA是CPHD疾病发生、发展的影响因素,积极控制SUA水平有助于预防CPHD的发生、发展。 展开更多
关键词 肺心病 高尿酸血症 肺疾病 慢性阻塞性 病例对照研究 最小绝对收缩和选择算法 倾向性评分
下载PDF
多传感器信息融合的轴承故障迁移诊断方法
5
作者 包从望 江伟 +1 位作者 张彩红 周大帅 《机电工程》 CAS 北大核心 2024年第5期878-885,共8页
在重型装备低速、重载、强噪声环境下,采用单一传感器难以全面获取轴承的故障诊断信息,导致故障识别率低、识别不稳定,致使变工况下轴承故障迁移诊断失效。针对以上问题,提出了一种多传感器信息融合的轴承故障迁移诊断方法。首先,结合... 在重型装备低速、重载、强噪声环境下,采用单一传感器难以全面获取轴承的故障诊断信息,导致故障识别率低、识别不稳定,致使变工况下轴承故障迁移诊断失效。针对以上问题,提出了一种多传感器信息融合的轴承故障迁移诊断方法。首先,结合传感器的通道数,构建了堆叠卷积神经网络(MCNNs)提取各个通道的故障特征;然后,在MCNNs中引入最小绝对收缩与选择算子(Lasso),并通过网络反向传播完成了特征权值的更新,从而获得了多通道特征的融合;最后,利用源域数据对模型进行了训练,提取了故障特征,并完成了特征融合,采用损失函数完成了模型参数的优化,将源域训练得到的模型结果作为目标域的初始模型,利用目标域样本对初始模型的参数进行了微调,从而完成了模型迁移;并进行了信息融合效果、方法对比以及传感器信息采集属性的性能实验。研究结果表明:传感器的安装位置对信息融合影响较大,MCNNs+Lasso方法具有较好的特征融合效果,平均迁移诊断精度为99.03%,部分精度可达99.97%,在多个变工况的迁移任务中表现出较高迁移精度和良好的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 多传感器信息融合 堆叠卷积神经网络 最小绝对收缩与选择算子 迁移学习
下载PDF
基于Nomogram模型鉴别肺腺癌病理亚型的临床价值
6
作者 王朝晖 岳军艳 《医学影像学杂志》 2024年第8期50-53,共4页
目的 探讨基于最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归分析构建Nomogram模型预测原位腺癌(AIS)、微浸润腺癌(MIA)及浸润性腺癌(IAC)的价值。方法 选取本院97例经手术病理证实且病理亚型明... 目的 探讨基于最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归分析构建Nomogram模型预测原位腺癌(AIS)、微浸润腺癌(MIA)及浸润性腺癌(IAC)的价值。方法 选取本院97例经手术病理证实且病理亚型明确的肺腺癌患者,将AIS和MIA归为第1组,IAC为第2组,比较两组患者年龄、性别、吸烟史、长径、短径及免疫组化Ki-67等临床医学特征差异,采用3D Slicer软件进行图像分割,特征提取与选择,通过LASSO算法对特征进行降维,筛选影像组学特征构建预测模型。再采用R软件的rms工具包构建Nomogram模型,计算ROC曲线下面积(AUC),以评价Nomogram模型鉴别肺磨玻璃结节病理亚型的效能。结果 1)性别、吸烟史、长径、短径及免疫组化Ki-67等临床医学特征均差异无统计学意义(P>0.05);2)筛选7个CT影像组学特征:平面度、大依赖低灰度强调、小波变换LHL第十百分位、小波变换HLL第十百分位、小波变换最小值、小波变换均值及小依赖低灰度强度比较,差异均有统计学意义(P均<0.05);3)基于CT影像组学特征建立预测肺磨玻璃结节病理亚型的Nomogram模型,训练集中AUC为0.863,准确率为87.9%,灵敏度为67.9%,特异度为91.1%;验证集中AUC为0.792,准确率为75.0%,灵敏度为66.7%,特异度为90.5%,可见此Nomogram模型具有较好的预测效能。结论 对于预测肺腺癌浸润程度,Nomogram模型具有明显优势,可作为一种鉴别手段。 展开更多
关键词 肺磨玻璃结节 最小绝对收缩和选择算子 Nomogram模型 病理亚型 体层摄影术 X线计算机
下载PDF
基于DGA与TPE-LightGBM的变压器故障诊断
7
作者 杨金鑫 廖才波 +3 位作者 胡雄 朱文清 张旭 刘邦 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期70-77,共8页
油中溶解气体分析(dissolved gas analysis,DGA)对变压器故障的早期预警及诊断具有重要意义。为了提升变压器故障诊断的准确性及可靠性,提出一种基于树结构概率密度估计(tree-structured parzen estimator,TPE)算法优化轻量级梯度提升机... 油中溶解气体分析(dissolved gas analysis,DGA)对变压器故障的早期预警及诊断具有重要意义。为了提升变压器故障诊断的准确性及可靠性,提出一种基于树结构概率密度估计(tree-structured parzen estimator,TPE)算法优化轻量级梯度提升机(light gradient boosting machine,LightGBM)的变压器故障诊断方法。首先,建立包含油中气体比值、编码等16维DGA特征集合,采用最小绝对收缩和选择(least absolute shrinkage and selection opera-tor,LASSO)算法选择用于变压器故障诊断的有效特征量;其次,构建基于LightGBM的变压器故障诊断方法,并引入TPE算法对LightGBM诊断模型参数进行优化,形成最优故障诊断模型;最后,选用精确度、召回率和F1分数等评价指标对所提诊断模型性能进行评估。研究结果表明,TPE-LightGBM的平均准确率为90.23%,其诊断精度及鲁棒性均优于RF和XGBoost等算法。同时,与现场常用的三比值法进行对比,所提方法的准确性和可靠性均有显著提升。该方法可有效提升电力变压器的智能运维水平。 展开更多
关键词 变压器 油中溶解气体 故障诊断 树结构概率密度估计 LASSO算法 轻量级梯度提升机
下载PDF
基于自噬基因的度洛西汀抗抑郁疗效预测模型的构建
8
作者 李偲媛 魏宇梅 +2 位作者 和申 曾端 李华芳 《临床精神医学杂志》 CAS 2024年第2期113-117,共5页
目的:通过生物信息学方法构建基于自噬基因的度洛西汀抗抑郁疗效预测模型。方法:在高通量基因表达数据库中下载GSE146446数据集,该芯片包括96例患者接受抗抑郁药物度洛西汀8周的治疗,组织样本为全血样本,以度洛西汀治疗8周后是否有效分... 目的:通过生物信息学方法构建基于自噬基因的度洛西汀抗抑郁疗效预测模型。方法:在高通量基因表达数据库中下载GSE146446数据集,该芯片包括96例患者接受抗抑郁药物度洛西汀8周的治疗,组织样本为全血样本,以度洛西汀治疗8周后是否有效分组,筛选两组间的差异表达基因,与自噬基因集取交集。利用最小绝对值收敛和选择算法回归(LASSO)及Logistic回归构建疗效预测模型。结果:SPNS1、ITPR3基因的表达水平均为度洛西汀抗抑郁疗效的影响因素(P均<0.05)。LASSO-Logistic回归模型:Logit(P)=33.7846+(-2.8615×SPNS1表达水平)+(-1.7716×ITPR3表达水平),其中Logit(P)=ln[P/(1-P)]。结论:基于自噬相关基因(SPNS1、ITPR3)表达量的度洛西汀的抗抑郁疗效预测模型具有较好的区分度、校准度以及疗效预测效能,未来可能为抑郁症患者使用度洛西汀药物治疗提供更为科学可靠的证据。 展开更多
关键词 抑郁症 自噬 自噬相关基因 预测模型 最小绝对值收敛和选择算法回归-Logistic回归模型
下载PDF
A prognostic four-gene signature and a therapeutic strategy for hepatocellular carcinoma:Construction and analysis of a circRNA-mediated competing endogenous RNA network
9
作者 Hai-Yan Zhang Jia-Jie Zhu +3 位作者 Zong-Ming Liu Yu-Xuan Zhang Jia-Jia Chen Ke-Da Chen 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2024年第3期272-287,共16页
Background:Hepatocellular carcinoma(HCC)has a poor long-term prognosis.The competition of circular RNAs(circRNAs)with endogenous RNA is a novel tool for predicting HCC prognosis.Based on the alterations of circRNA reg... Background:Hepatocellular carcinoma(HCC)has a poor long-term prognosis.The competition of circular RNAs(circRNAs)with endogenous RNA is a novel tool for predicting HCC prognosis.Based on the alterations of circRNA regulatory networks,the analysis of gene modules related to HCC is feasible.Methods:Multiple expression datasets and RNA element targeting prediction tools were used to construct a circRNA-microRNA-mRNA network in HCC.Gene function,pathway,and protein interaction analyses were performed for the differentially expressed genes(DEGs)in this regulatory network.In the proteinprotein interaction network,hub genes were identified and subjected to regression analysis,producing an optimized four-gene signature for prognostic risk stratification in HCC patients.Anti-HCC drugs were excavated by assessing the DEGs between the low-and high-risk groups.A circRNA-microRNA-hub gene subnetwork was constructed,in which three hallmark genes,KIF4A,CCNA2,and PBK,were subjected to functional enrichment analysis.Results:A four-gene signature(KIF4A,CCNA2,PBK,and ZWINT)that effectively estimated the overall survival and aided in prognostic risk assessment in the The Cancer Genome Atlas(TCGA)cohort and International Cancer Genome Consortium(ICGC)cohort was developed.CDK inhibitors,PI3K inhibitors,HDAC inhibitors,and EGFR inhibitors were predicted as four potential mechanisms of drug action(MOA)in high-risk HCC patients.Subsequent analysis has revealed that PBK,CCNA2,and KIF4A play a crucial role in regulating the tumor microenvironment by promoting immune cell invasion,regulating microsatellite instability(MSI),and exerting an impact on HCC progression.Conclusions:The present study highlights the role of the circRNA-related regulatory network,identifies a four-gene prognostic signature and biomarkers,and further identifies novel therapy for HCC. 展开更多
关键词 Hepatocellular carcinoma circRNA-related ceRNA network Biomarker Least absolute shrinkage and selection operator BIOINFORMATICS
下载PDF
基于LASSO回归和Nomogram预测经皮肾活检术后出血风险
10
作者 李铖铖 梅莞翠 +1 位作者 柏刚 张忠磊 《中国医学工程》 2024年第8期8-15,共8页
目的探讨超声引导下经皮肾穿刺活检术后出血的危险因素,并构建列线图预测模型。方法回顾性收集2022年6月1日至2023年6月1日在十堰市太和医院超声医学科进行实时超声引导下经皮肾穿刺活检住院患者的临床及影像资料。采用LASSO回归、Logis... 目的探讨超声引导下经皮肾穿刺活检术后出血的危险因素,并构建列线图预测模型。方法回顾性收集2022年6月1日至2023年6月1日在十堰市太和医院超声医学科进行实时超声引导下经皮肾穿刺活检住院患者的临床及影像资料。采用LASSO回归、Logistic回归分析,构建超声引导下肾穿刺活检术后出血的列线图预测模型,利用受试者工作特征(ROC)曲线、校正曲线(calibration curve)和决策曲线分析(DCA)三个层面对模型进行评估。结果最终纳入206例超声引导下肾穿刺活检的患者。LASSO回归及Logistic回归分析结果显示,高血压病史(OR=5.339,P<0.001)、穿刺肾下极皮质厚度(OR=0.410,P<0.001)、穿刺肾皮髓质分界不清(OR=6.133,P<0.001)和穿刺时患者不能配合(OR=4.525,P=0.004)是超声引导下肾穿刺活检后出血的独立危险因素。列线图预测模型具有良好的诊断效能AUC=0.891,95%CI为0.842~0.941,绘制模型校准曲线,平均绝对误差为0.026,理想曲线和校正曲线贴合较好。Hosmer-Lemeshow检测χ^(2)=6.599,P=0.580(P>0.05),表明该模型的准确度较好。绘制临床决策曲线显示当列线图预测模型的阈概率小于89%时,该模型的临床净收益率最高。结论高血压病史、穿刺肾下极皮质厚度、穿刺肾皮髓质分界不清、穿刺时患者不能配合是超声引导下肾穿刺活检术后出血的危险因素;基于列线图模型预测超声引导下肾穿刺活检术后出血具有可行性,可以为临床评估肾穿刺活检后出血风险提供可视化依据。 展开更多
关键词 肾活检 出血 高危因素 LASSO回归 列线图
下载PDF
早期帕金森病诊断评分模型构建及效能验证
11
作者 汪国宏 王玉婷 +2 位作者 王亚奇 胡婉华 夏仕勇 《山东医药》 CAS 2024年第19期15-19,共5页
目的构建早期帕金森病(PD)的诊断评分模型,并验证其效能。方法选择PD患者75例及性别、年龄与PD患者相匹配的健康志愿者75例,随机分为验证组(PD患者38例、健康志愿者37例)与训练组(PD患者37例、健康志愿者38例)。收集受试者病历资料。用... 目的构建早期帕金森病(PD)的诊断评分模型,并验证其效能。方法选择PD患者75例及性别、年龄与PD患者相匹配的健康志愿者75例,随机分为验证组(PD患者38例、健康志愿者37例)与训练组(PD患者37例、健康志愿者38例)。收集受试者病历资料。用最小绝对收缩和选择算子(LASSO)算法,通过十折交叉验证确定最优参数,从训练组相关资料中筛选出具有相关性的诊断因子,并根据各因子系数构建诊断评分模型。通过Logistic回归构建列线图;绘制受试者工作特征曲线,通过曲线下面积和校准曲线评价该模型的诊断效能以及拟合度。结果训练组与验证组相关资料比较差异无统计学意义(P均>0.05)。训练组经LASSO算法确定最佳参数λ=0.052,筛选出具鉴别能力的7个指标,诊断评分模型公式=-1.048+0.961×睡眠行为障碍筛查问卷(RBDSQ)评分+0.079×汉密尔顿焦虑量表14项(HAMA-14)评分-0.0002×神经元特异性烯醇化酶(NSE)-0.011×血管内皮生长因子(VEGF)-0.001×尿酸-0.046×各向异性(FA)+0.003×舒张末期血流速度(DFV)。多因素Logistic回归分析确认所筛选的7个指标可作为早期PD患者的独立诊断因子。在验证组中该诊断评分模型用于诊断早期PD患者的曲线下面积为0.91,高于7个因子单独诊断早期PD的曲线下面积;拟合曲线显示该模型有较好的拟合优度。结论基于RBDSQ评分、HAMA-14评分、VEGF、FA、NSE、尿酸及DFV构建了早期PD的诊断评分模型,该模型有较高的诊断效能。 展开更多
关键词 帕金森病 早期 最小绝对收缩和选择算子 诊断评分模型 诊断效能
下载PDF
凝血指标对髋部骨折患者血栓形成风险的预测
12
作者 郑爱美 吴银生 《中国现代医生》 2024年第23期48-52,共5页
目的探讨凝血指标对髋部骨折患者围术期静脉血栓形成风险的预测价值。方法回顾性纳入2020年2月至2022年12月收入笔者医院的160例髋部骨折患者,采取随机数字表法将其分为训练集(n=112例)和验证集(n=48例),进一步根据训练集患者围术期是... 目的探讨凝血指标对髋部骨折患者围术期静脉血栓形成风险的预测价值。方法回顾性纳入2020年2月至2022年12月收入笔者医院的160例髋部骨折患者,采取随机数字表法将其分为训练集(n=112例)和验证集(n=48例),进一步根据训练集患者围术期是否发生深静脉血栓(deep vein thrombosis,DVT)划分为发生组和未发生组。使用最小绝对收缩与选择算子(least absolute shrinkage and selection operator,LASSO)选取变量形成LASSO回归模型;绘制受试者操作特征(receiver operating characteristic,ROC)曲线分析模型的预测效能;通过验证集数据实现验证模型的预测效能。结果训练集与验证集患者性别、年龄等一般及临床资料比较,差异均无统计学意义(P>0.05)。训练集内发生组与未发生组患者性别、年龄、骨折至入院时间、体质量指数、D-二聚体、纤维蛋白原、总蛋白、白蛋白、前白蛋白、球蛋白、血红蛋白、血清钙、红细胞体积、白细胞计数、红细胞体积分布宽度、活化部分凝血活酶时间、凝血酶原时间及淋巴细胞比率比较,差异有统计学意义(P<0.05)。通过组间相关系数(intraclass correlation coefficient,ICC)与LASSO筛选出6个非零系数的最优变量,分别是年龄、体质量指数、D-二聚体、纤维蛋白原、凝血酶原时间及活化部分凝血活酶时间,非零系数依次为9.104、1.792、1.270、2.447、3.037及-1.561。结论年龄、体质量指数、D-二聚体、纤维蛋白原、凝血酶原时间及活化部分凝血活酶时间变量联合形成的LASSO回归模型可作为预测髋部骨折患者围术期DVT形成风险的辅助工具。 展开更多
关键词 髋部骨折 深静脉血栓 围手术期 最小绝对收缩与选择算子
下载PDF
Characterization of immunogenic cell death-related genes predicting prognosis in colon adenocarcinoma
13
作者 Jie Chen Hong-Yi Zhou Fu-Yi Xie 《Medical Data Mining》 2024年第4期19-27,共9页
Background:Colon adenocarcinoma(COAD)is a gastrointestinal malignancy with a high mortality rate.Studies have confirmed the role of immunogenic cell death(ICD)in different cancer types.However,there is a lack of resea... Background:Colon adenocarcinoma(COAD)is a gastrointestinal malignancy with a high mortality rate.Studies have confirmed the role of immunogenic cell death(ICD)in different cancer types.However,there is a lack of research on ICD-related genes(ICD-RGs)in COAD.This study aimed to examine the impact of ICD-RGs on COAD and their interaction with the immune microenvironment.Methods:Using data from The Cancer Genome Atlas and Gene Expression Omnibus databases,we identified 107 ICD-RGs in COAD.Using a one-way Cox regression analysis,we examined the relationship between these ICD-RGs and overall survival in COAD.Results:Following the regression analyses,we identified 14 overall survival-related genes.Furthermore,we examined the predictive impact of the ICD-RGs using the least absolute shrinkage and selection operator regression analysis and developed a nine-genes prognostic model.The Cancer Genome Atlas and Gene Expression Omnibus datasets were used for training and validation.Kaplan-Meier analysis was used to confirm that the high-risk group had a lower survival rate than the low-risk group.Finally,following a multifactorial analysis,we created a prognostic nomogram that integrated clinical data and risk scores.Conclusions:The nine-genes model exhibits robust stability and can provide valuable insights for guiding the development of tumor immunotherapy strategies and personalized drug selection for patients with COAD. 展开更多
关键词 colon adenocarcinoma least absolute shrinkage and selection operator PROGNOSIS immunogenic cell death-related genes
下载PDF
基于混合级联模型的现货市场日前电价预测方法
14
作者 向婕 韩敬涛 +3 位作者 钟崇光 王逢浩 汪付星 高岩 《吉林电力》 2024年第5期17-21,共5页
准确预测节点电价有助于调度机构实现对发电机组的最优调度,实现电力系统发电成本最优的目的,同时有利于发电方把握市场走向,构建最优的电量、电价投标策略以获取最大利润。由于用电行为、天气情况、电网调度等因素的影响,节点电价在不... 准确预测节点电价有助于调度机构实现对发电机组的最优调度,实现电力系统发电成本最优的目的,同时有利于发电方把握市场走向,构建最优的电量、电价投标策略以获取最大利润。由于用电行为、天气情况、电网调度等因素的影响,节点电价在不同时期的数据分布差异较大,预测难度高。因此,提出一种基于混合级联模型的日前节点电价预测方法,采用不同模型分别对突变天和非突变天的节点电价进行预测,实验证明该方法可以有效提高节点电价预测精度。首先,定义突变天,并对历史实际节点电价数据进行标注;其次,获取全省的气象、市场等数据,作为模型的输入特征并进行预处理,根据上述特征构建二分类模型判断预测日是否属于突变天;最后,根据二分类结果,将预测日数据输入最小绝对收缩和选择算法模型或随机森林回归模型,预测节点电价。结果验证了所提方法的有效性和优越性。 展开更多
关键词 电力交易 节点电价预测 机器学习 最小绝对收缩和选择算法回归 随机森林回归
下载PDF
基于LASSO-SVM的软件缺陷预测模型研究 被引量:16
15
作者 吴晓萍 赵学靖 +2 位作者 乔辉 刘东梅 王志 《计算机应用研究》 CSCD 北大核心 2013年第9期2748-2751,2754,共5页
针对当前大多数软件缺陷预测模型预测准确率较差的问题,提出了结合最小绝对值压缩和选择方法与支持向量机算法的软件缺陷预测模型。首先利用最小绝对值压缩与选择方法的特征选择能力降低了原始数据集的维度,去除了与软件缺陷预测不相关... 针对当前大多数软件缺陷预测模型预测准确率较差的问题,提出了结合最小绝对值压缩和选择方法与支持向量机算法的软件缺陷预测模型。首先利用最小绝对值压缩与选择方法的特征选择能力降低了原始数据集的维度,去除了与软件缺陷预测不相关的数据集;然后利用交叉验证算法的参数寻优能力找到支持向量机的最优相关参数;最后运用支持向量机的非线性运算能力完成了软件缺陷预测。仿真实验结果表明,所提出的缺陷预测模型与传统的缺陷预测模型相比具有较高的预测准确率,且预测速度更快。 展开更多
关键词 软件缺陷预测 最小绝对值压缩与选择方法 特征选择 支持向量机 交叉验证
下载PDF
基于变量选择-神经网络模型的复杂路网短时交通流预测 被引量:13
16
作者 蒋士正 许榕 陈启美 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第2期281-286,共6页
针对传统交通流预测模型正在由单断面历史数据处理向多断面、多时刻历史数据处理转变,但在考虑各断面间的影响时,多变的交通状况往往会使预测模型复杂化的问题,引入一种多元线性回归最小绝对收缩和选择算子方法(Lasso),并利用其优秀的... 针对传统交通流预测模型正在由单断面历史数据处理向多断面、多时刻历史数据处理转变,但在考虑各断面间的影响时,多变的交通状况往往会使预测模型复杂化的问题,引入一种多元线性回归最小绝对收缩和选择算子方法(Lasso),并利用其优秀的变量选择能力,在复杂路网多断面中选出相关性较高的断面;结合神经网络(NN)的非线性特性,提出了Lasso-NN组合模型.结果表明:Lasso-NN模型在路网交叉口对未来15min交通流数据预测的误差率低于9.2%;在非交叉口的误差率低于6.7%,总体优于各自单独使用得出的结果. 展开更多
关键词 短时交通流预测 最小绝对收缩和选择算子 变量选择 神经网络
下载PDF
针对Lasso问题的多维权重求解算法 被引量:8
17
作者 陈善雄 刘小娟 +1 位作者 陈春蓉 郑方园 《计算机应用》 CSCD 北大核心 2017年第6期1674-1679,共6页
最小绝对收缩和选择算子(Lasso)在数据维度约减、异常检测方面有着较强的计算优势。针对Lasso用于异常检测中检测精度不高的问题,提出了一种基于多维度权重的最小角回归(LARS)算法解决Lasso问题。首先考虑每个回归变量在回归模型中所占... 最小绝对收缩和选择算子(Lasso)在数据维度约减、异常检测方面有着较强的计算优势。针对Lasso用于异常检测中检测精度不高的问题,提出了一种基于多维度权重的最小角回归(LARS)算法解决Lasso问题。首先考虑每个回归变量在回归模型中所占权重不同,即此属性变量在整体评价中的相对重要程度不同,故在LARS算法计算角分线时,将各回归变量与剩余变量的联合相关度纳入考虑,用来区分不同属性变量对检测结果的影响;然后在LARS算法中加入主成分分析(PCA)、独立权数法、基于Intercriteria相关性的指标的重要度评价(CRITIC)法这三种权重估计方法,并进一步对LARS求解的前进方向和前进变量选择进行优化。最后使用Pima Indians Diabetes数据集验证算法的优良性。实验结果表明,在更小阈值的约束条件下,加入多维权重后的LARS算法对Lasso问题的解具有更高的准确度,能更好地用于异常检测。 展开更多
关键词 最小绝对收缩和选择算子 变量选择 最小角回归 多元线性回归 加权
下载PDF
双参数纹理分析结合机器学习在高级别前列腺癌中的诊断价值 被引量:7
18
作者 肖建明 牛翔科 +3 位作者 王娜 陈志凡 王宗勇 彭涛 《中国医学影像学杂志》 CSCD 北大核心 2021年第2期177-180,共4页
目的对比MR双参数与多参数成像纹理及定量分析结合机器学习对高级别前列腺癌的诊断价值。资料与方法回顾性分析疑似前列腺癌并行前列腺多参数MRI和经直肠超声引导穿刺活检取得病理结果的194例患者,采用Omni-Kinetics软件分别在T2WI、表... 目的对比MR双参数与多参数成像纹理及定量分析结合机器学习对高级别前列腺癌的诊断价值。资料与方法回顾性分析疑似前列腺癌并行前列腺多参数MRI和经直肠超声引导穿刺活检取得病理结果的194例患者,采用Omni-Kinetics软件分别在T2WI、表观扩散系数(ADC)、T1加权动态磁敏感增强(T1WI_DSC)序列勾画病灶所在全部层面兴趣区,提取病变区纹理及定量特征数据后采用多因素Logistic回归分析。应用受试者工作特征(ROC)曲线评价双参数(T2WI+ADC)与多参数(T2WI+ADC+T1WI_DSC)诊断高级别前列腺癌的差异。结果双参数诊断高级别前列腺癌的敏感度为82.61%,特异度为86.11%,准确度为84.75%;多参数诊断高级别前列腺癌的敏感度为86.97%,特异度为86.11%,准确度为86.44%。两验证组ROC曲线下面积差异无统计学意义(0.918比0.946,P=0.077)。结论MR双参数纹理分析结合机器学习诊断高级别前列腺癌有较高的准确性。 展开更多
关键词 前列腺肿瘤 磁共振成像 扩散加权成像 表观扩散系数 纹理分析 最少绝对收缩和选择算子
下载PDF
基于提升建模的锌离子与钴离子浓度紫外可见吸收光谱检测方法 被引量:4
19
作者 朱红求 周涛 +1 位作者 李勇刚 陈俊名 《分析化学》 SCIE EI CAS CSCD 北大核心 2019年第4期576-582,共7页
紫外可见分光光度法检测高浓度Zn离子和痕量Co(Ⅱ)离子混合溶液时,由于Zn(Ⅱ)离子对痕量Co(Ⅱ)离子吸收光谱的掩蔽,以及两种离子之间化学性质相近,经常导致光谱重叠、相互干扰。针对这一问题,本研究提出一种基于提升建模的Zn(Ⅱ)离子和... 紫外可见分光光度法检测高浓度Zn离子和痕量Co(Ⅱ)离子混合溶液时,由于Zn(Ⅱ)离子对痕量Co(Ⅱ)离子吸收光谱的掩蔽,以及两种离子之间化学性质相近,经常导致光谱重叠、相互干扰。针对这一问题,本研究提出一种基于提升建模的Zn(Ⅱ)离子和Co(Ⅱ)离子浓度紫外可见吸收光谱检测方法。本方法通过对校正集加权采样获得子数据集;然后使用子数据集建立不同压缩比的LASSO回归子模型集,使用赤池信息量准则(AIC)选择最优子模型;根据子模型对建模样本的误差大小,更新样本权重,重复迭代建模至子模型收敛;最后根据子模型的预测性能给予子模型不同的权重,加权融合子模型得到最终的总模型。共获得80组Zn(Ⅱ)离子和Co(Ⅱ)离子混合溶液的紫外可见光谱数据集,将本方法与全波段的偏最小二乘(PLS)、蒙特卡洛无信息变量消除(MCUVE)-PLS及竞争自适应重加权采样(CARS)-PLS进行了比较分析,对于Zn(Ⅱ)离子,本方法保留的有效波长点个数相比PLS、MCUVE-PLS和CARS-PLS都大幅减少,预测均方根误差相对于PLS、MCUVEPLS和CARS-PLS分别减少55. 3%、21. 3%和1. 64%。对于Co(Ⅱ)离子,本方法保留的有效波长点个数相比MCUVE-PLS和CARS-PLS大量减少,降低了模型的复杂度,预测均方根误差相对于PLS、MCUVE-PLS和CARS-PLS分别减少71.4%、46.2%和54.8%。 展开更多
关键词 紫外可见吸收光谱 LASSO回归 提升建模 金属离子检测
下载PDF
基于粒化-融合的海量高维数据特征选择算法 被引量:4
20
作者 冀素琴 石洪波 +1 位作者 吕亚丽 郭珉 《模式识别与人工智能》 EI CSCD 北大核心 2016年第7期590-597,共8页
基于粒计算视角,提出粒化-融合框架下的海量高维数据特征选择算法.运用BLB(Bag of Little Bootstrap)的思想,首先将原始海量数据集粒化为小规模数据子集(粒),然后在每个粒上构建多个自助子集的套索模型,实现粒特征选择,最后,各粒特征选... 基于粒计算视角,提出粒化-融合框架下的海量高维数据特征选择算法.运用BLB(Bag of Little Bootstrap)的思想,首先将原始海量数据集粒化为小规模数据子集(粒),然后在每个粒上构建多个自助子集的套索模型,实现粒特征选择,最后,各粒特征选择结果按权重融合、排序,得到原始数据集的有序特征选择结果.人工数据集和真实数据集上的实验表明文中算法对海量高维数据集进行特征选择的可行性和有效性. 展开更多
关键词 海量高维数据 特征选择 粒计算 套索(LASSO)
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部