Least square support vector regression(LSSVR)is a method for function approximation,whose solutions are typically non-sparse,which limits its application especially in some occasions of fast prediction.In this paper,a...Least square support vector regression(LSSVR)is a method for function approximation,whose solutions are typically non-sparse,which limits its application especially in some occasions of fast prediction.In this paper,a sparse algorithm for adaptive pruning LSSVR algorithm based on global representative point ranking(GRPR-AP-LSSVR)is proposed.At first,the global representative point ranking(GRPR)algorithm is given,and relevant data analysis experiment is implemented which depicts the importance ranking of data points.Furthermore,the pruning strategy of removing two samples in the decremental learning procedure is designed to accelerate the training speed and ensure the sparsity.The removed data points are utilized to test the temporary learning model which ensures the regression accuracy.Finally,the proposed algorithm is verified on artificial datasets and UCI regression datasets,and experimental results indicate that,compared with several benchmark algorithms,the GRPR-AP-LSSVR algorithm has excellent sparsity and prediction speed without impairing the generalization performance.展开更多
Considering the modeling errors of on-board self-tuning model in the fault diagnosis of aero-engine, a new mechanism for compensating the model outputs is proposed. A discrete series predictor based on multi-outputs l...Considering the modeling errors of on-board self-tuning model in the fault diagnosis of aero-engine, a new mechanism for compensating the model outputs is proposed. A discrete series predictor based on multi-outputs least square support vector regression (LSSVR) is applied to the compensation of on-board self-tuning model of aero-engine, and particle swarm optimization (PSO) is used to the kernels selection of multi-outputs LSSVR. The method need not reconstruct the model of aero-engine because of the differences in the individuals of the same type engines and engine degradation after use. The concrete steps for the application of the method are given, and the simulation results show the effectiveness of the algorithm.展开更多
The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are ...The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are rarely reported. Therefore, a pre-warning system was established in this study based on the intelligent prediction of energy consumption and the identification of abnormal energy consumption. A least square support vector regression (LSSVR) model optimized by the adaptive genetic algorithm was developed to predict the energy consumption in the process of lead smelting. A recurrence plots (RP) analysis and a confidence intervals (CI) analysis were conducted to quantitatively confirm the stationary degree of energy consumption and the normal range of energy consumption, respectively, to realize the identification of abnormal energy consumption. It is found the prediction accuracy of LSSVR model can exceed 90% based on the comparison between the actual and predicted data. The energy consumption is considered to be non-stationary if the correlation coefficient between the time series of periodicity and energy consumption is larger than that between the time series of periodicity and Lorenz. Additionally, the lower limit and upper limit of normal energy consumption are obtained.展开更多
In order to establish an adaptive turbo-shaft engine model with high accuracy, a new modeling method based on parameter selection (PS) algorithm and multi-input multi-output recursive reduced least square support ve...In order to establish an adaptive turbo-shaft engine model with high accuracy, a new modeling method based on parameter selection (PS) algorithm and multi-input multi-output recursive reduced least square support vector regression (MRR-LSSVR) machine is proposed. Firstly, the PS algorithm is designed to choose the most reasonable inputs of the adaptive module. During this process, a wrapper criterion based on least square support vector regression (LSSVR) machine is adopted, which can not only reduce computational complexity but also enhance generalization performance. Secondly, with the input variables determined by the PS algorithm, a mapping model of engine parameter estimation is trained off-line using MRR-LSSVR, which has a satisfying accuracy within 5&. Finally, based on a numerical simulation platform of an integrated helicopter/ turbo-shaft engine system, an adaptive turbo-shaft engine model is developed and tested in a certain flight envelope. Under the condition of single or multiple engine components being degraded, many simulation experiments are carried out, and the simulation results show the effectiveness and validity of the proposed adaptive modeling method.展开更多
基金supported by the Science and Technology on Space Intelligent Control Laboratory for National Defense(KGJZDSYS-2018-08)。
文摘Least square support vector regression(LSSVR)is a method for function approximation,whose solutions are typically non-sparse,which limits its application especially in some occasions of fast prediction.In this paper,a sparse algorithm for adaptive pruning LSSVR algorithm based on global representative point ranking(GRPR-AP-LSSVR)is proposed.At first,the global representative point ranking(GRPR)algorithm is given,and relevant data analysis experiment is implemented which depicts the importance ranking of data points.Furthermore,the pruning strategy of removing two samples in the decremental learning procedure is designed to accelerate the training speed and ensure the sparsity.The removed data points are utilized to test the temporary learning model which ensures the regression accuracy.Finally,the proposed algorithm is verified on artificial datasets and UCI regression datasets,and experimental results indicate that,compared with several benchmark algorithms,the GRPR-AP-LSSVR algorithm has excellent sparsity and prediction speed without impairing the generalization performance.
文摘Considering the modeling errors of on-board self-tuning model in the fault diagnosis of aero-engine, a new mechanism for compensating the model outputs is proposed. A discrete series predictor based on multi-outputs least square support vector regression (LSSVR) is applied to the compensation of on-board self-tuning model of aero-engine, and particle swarm optimization (PSO) is used to the kernels selection of multi-outputs LSSVR. The method need not reconstruct the model of aero-engine because of the differences in the individuals of the same type engines and engine degradation after use. The concrete steps for the application of the method are given, and the simulation results show the effectiveness of the algorithm.
基金Project(2015SK1002) supported by Key Projects of Hunan Province Science and Technology Plan,China
文摘The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are rarely reported. Therefore, a pre-warning system was established in this study based on the intelligent prediction of energy consumption and the identification of abnormal energy consumption. A least square support vector regression (LSSVR) model optimized by the adaptive genetic algorithm was developed to predict the energy consumption in the process of lead smelting. A recurrence plots (RP) analysis and a confidence intervals (CI) analysis were conducted to quantitatively confirm the stationary degree of energy consumption and the normal range of energy consumption, respectively, to realize the identification of abnormal energy consumption. It is found the prediction accuracy of LSSVR model can exceed 90% based on the comparison between the actual and predicted data. The energy consumption is considered to be non-stationary if the correlation coefficient between the time series of periodicity and energy consumption is larger than that between the time series of periodicity and Lorenz. Additionally, the lower limit and upper limit of normal energy consumption are obtained.
基金co-supported by Aeronautical Science Foundation of China (No. 2010ZB52011)Funding of Jiangsu Innovation Program for Graduate Education (No.CXLX11_0213)
文摘In order to establish an adaptive turbo-shaft engine model with high accuracy, a new modeling method based on parameter selection (PS) algorithm and multi-input multi-output recursive reduced least square support vector regression (MRR-LSSVR) machine is proposed. Firstly, the PS algorithm is designed to choose the most reasonable inputs of the adaptive module. During this process, a wrapper criterion based on least square support vector regression (LSSVR) machine is adopted, which can not only reduce computational complexity but also enhance generalization performance. Secondly, with the input variables determined by the PS algorithm, a mapping model of engine parameter estimation is trained off-line using MRR-LSSVR, which has a satisfying accuracy within 5&. Finally, based on a numerical simulation platform of an integrated helicopter/ turbo-shaft engine system, an adaptive turbo-shaft engine model is developed and tested in a certain flight envelope. Under the condition of single or multiple engine components being degraded, many simulation experiments are carried out, and the simulation results show the effectiveness and validity of the proposed adaptive modeling method.