Well completions are generally used to connect a reservoir to the surface so that fluids can be produced from orinjected into it. With these systems, pipe flows are typically established in the horizontal sections of ...Well completions are generally used to connect a reservoir to the surface so that fluids can be produced from orinjected into it. With these systems, pipe flows are typically established in the horizontal sections of slotted screencompletions and inflow control device (ICD) completions;moreover, an annular flow exists in the region betweenthe pipe and the borehole wall. On the basis of the principles of mass and momentum conservation, in the presentstudy, a coupling model considering the variable mass flow of the central tubing, the variable mass flow of theannular tubing and the reservoir seepage is implemented to simulate the wellbore–annulus–reservoir behaviorin the horizontal section of slotted-screen and ICD completions. In earlier models, only the central tubing variablemass flow and reservoir seepage flow were considered. The present results show that the closer the heel end, thegreater is the flow per unit length in the central tubing from the annulus. When external casing packers are notconsidered, the predicted production rate of the slotted screen completion, which is obtained using the variablemass flow model not taking into account the annulus flow, is 9.51% higher than the rate obtained using the (complete) model with annulus flow. In addition, the incomplete model forecasts the production of ICD completion ata 70.98% higher rate. Both models show that the pressure profile and flow profile of the borehole wall are relatively uniform in the wellbore–annulus–reservoir in horizontal wells.展开更多
基金the Scientific Research and Technological Development Project of CNPC(2019D-4413).
文摘Well completions are generally used to connect a reservoir to the surface so that fluids can be produced from orinjected into it. With these systems, pipe flows are typically established in the horizontal sections of slotted screencompletions and inflow control device (ICD) completions;moreover, an annular flow exists in the region betweenthe pipe and the borehole wall. On the basis of the principles of mass and momentum conservation, in the presentstudy, a coupling model considering the variable mass flow of the central tubing, the variable mass flow of theannular tubing and the reservoir seepage is implemented to simulate the wellbore–annulus–reservoir behaviorin the horizontal section of slotted-screen and ICD completions. In earlier models, only the central tubing variablemass flow and reservoir seepage flow were considered. The present results show that the closer the heel end, thegreater is the flow per unit length in the central tubing from the annulus. When external casing packers are notconsidered, the predicted production rate of the slotted screen completion, which is obtained using the variablemass flow model not taking into account the annulus flow, is 9.51% higher than the rate obtained using the (complete) model with annulus flow. In addition, the incomplete model forecasts the production of ICD completion ata 70.98% higher rate. Both models show that the pressure profile and flow profile of the borehole wall are relatively uniform in the wellbore–annulus–reservoir in horizontal wells.