The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features becau...The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features because the quality of modeling greatly depends on therepresentation of features. Some fitting techniques of natural quadric surfaces with least-squaresmethod are described. And these techniques can be directly used to extract quadric surfaces featuresduring the process of segmentation for point cloud.展开更多
This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obt...This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obtained in T = n(log2m + log2(n - r + 1) + 5) + log2m + 1 steps with P=mn processors when m × 2(n - 1) and with P = 2n(n - 1) processors otherwise.展开更多
Order-recursive least-squares(ORLS)algorithms are applied to the prob-lems of estimation and identification of FIR or ARMA system parameters where a fixedset of input signal samples is available and the desired order ...Order-recursive least-squares(ORLS)algorithms are applied to the prob-lems of estimation and identification of FIR or ARMA system parameters where a fixedset of input signal samples is available and the desired order of the underlying model isunknown.On the basis of several universal formulae for updating nonsymmetric projec-tion operators,this paper presents three kinds of LS algorithms,called nonsymmetric,symmetric and square root normalized fast ORLS algorithms,respectively.As to the au-thors’ knowledge,the first and the third have not been so far provided,and the second isone of those which have the lowest computational requirement.Several simplified versionsof the algorithms are also considered.展开更多
Coal consumption curve of the thermal power plant can reflect the function relationship between the coal consumption of unit and load, which plays a key role for research on unit economic operation and load optimal di...Coal consumption curve of the thermal power plant can reflect the function relationship between the coal consumption of unit and load, which plays a key role for research on unit economic operation and load optimal dispatch. Now get coal consumption curve is generally obtained by least square method, but which are static curve and these curves remain unchanged for a long time, and make them are incompatible with the actual operation situation of the unit. Furthermore, coal consumption has the characteristics of typical nonlinear and time varying, sometimes the least square method does not work for nonlinear complex problems. For these problems, a method of coal consumption curve fitting of the thermal power plant units based on genetic algorithm is proposed. The residual analysis method is used for data detection;quadratic function is employed to the objective function;appropriate parameters such as initial population size, crossover rate and mutation rate are set;the unit’s actual coal consumption curves are fitted, and comparing the proposed method with least squares method, the results indicate that fitting effect of the former is better than the latter, and further indicate that the proposed method to do curve fitting can best approximate known data in a certain significance, and they can real-timely reflect the interdependence between power output and coal consumption.展开更多
3D ground-penetrating radar has been widely used in urban road underground disease detection due to its nondestructive,efficient,and intuitive results.However,the 3D imaging of the underground target body presents the...3D ground-penetrating radar has been widely used in urban road underground disease detection due to its nondestructive,efficient,and intuitive results.However,the 3D imaging of the underground target body presents the edge plate phenomenon due to the space between the 3D radar array antennas.Consequently,direct 3D imaging using detection results cannot reflect underground spatial distribution characteristics.Due to the wide-beam polarization of the ground-penetrating radar antenna,the emission of electromagnetic waves with a specific width decreases the strong middle energy on both sides gradually.Therefore,a bicubic high-precision 3D target body slice-imaging fitting algorithm with changing trend characteristics is constructed by combining the subsurface target characteristics with the changing spatial morphology trends.Using the wide-angle polarization antenna’s characteristics in the algorithm to build the trend factor between the measurement lines,the target body change trend and the edge detail portrayal achieve a 3D ground-penetrating radar-detection target high-precision fitting.Compared with other traditional fitting techniques,the fitting error is small.This paper conducts experiments and analyses on GpaMax 3D forward modeling and 3D ground-penetrating measured radar data.The experiments show that the improved bicubic fitting algorithm can eff ectively improve the accuracy of underground target slice imaging and the 3D ground-penetrating radar’s anomaly interpretation.展开更多
The algorithm is divided into two steps. The first step pre-locates the blank by aligning its centre of gravity and approximate normal vector with those of destination surfaces, with largest overlap of projections...The algorithm is divided into two steps. The first step pre-locates the blank by aligning its centre of gravity and approximate normal vector with those of destination surfaces, with largest overlap of projections of two objects on a plane perpendicular to the normal vector. The second step is optimizing an objective function by means of gradient-simulated annealing algorithm to get the best matching of a set of distributed points on the blank and destination surfaces. An example for machining hydroelectric turbine blades is given to verify the effectiveness of algorithm.展开更多
In design science, these two kinds of problems are mutually nested, however, the nesting could not blind us for the fact that their problem-solving and solution justification methods are different. The ant algorithms ...In design science, these two kinds of problems are mutually nested, however, the nesting could not blind us for the fact that their problem-solving and solution justification methods are different. The ant algorithms research field, builds on the idea that the study of the behavior of ant colonies or other social insects is interesting, because it provides models of distributed organization which could be utilized as a source of inspiration for the design of optimization and distributed control algorithms. In this paper, a relatively new type of hybridizing ant search algorithm is developed, and the results are compared against other algorithms. The intelligence of this heuristic approach is not portrayed by individual ants, but rather is expressed by the colony as a whole inspired by labor division and brood sorting. This solution obtained by this method will be evaluated against the one obtained by other traditional heuristics.展开更多
An intuitive method for circle fitting is proposed. Assuming an approximate circle(CA,n) for the fitting of some scattered points, it can be imagined that every point would apply a force to CA,n, which all together fo...An intuitive method for circle fitting is proposed. Assuming an approximate circle(CA,n) for the fitting of some scattered points, it can be imagined that every point would apply a force to CA,n, which all together form an overall effect that "draws" CA,n towards best fitting to the group of points. The basic element of the force is called circular attracting factor(CAF) which is defined as a real scalar in a radial direction of CA,n. An iterative algorithm based on this idea is proposed, and the convergence and accuracy are analyzed. The algorithm converges uniformly which is proved by the analysis of Lyapunov function, and the accuracy of the algorithm is in accord with that of geometric least squares of circle fitting. The algorithm is adopted to circle detection in grayscale images, in which the transferring to binary images is not required, and thus the algorithm is less sensitive to lightening and background noise. The main point for the adaption is the calculation of CAF which is extended in radial directions of CA,n for the whole image. All pixels would apply forces to CA,n, and the overall effect of forces would be equivalent to a force from the centroid of pixels to CA,n. The forces from would-be edge pixels would overweigh that from noisy pixels, so the following approximate circle would be of better fitting. To reduce the amount of calculation, pixels are only used in an annular area including the boundary of CA,n just in between for the calculation of CAF. Examples are given, showing the process of circle fitting of scattered points around a circle from an initial assuming circle, comparing the fitting results for scattered points from some related literature, applying the method proposed for circular edge detection in grayscale images with noise, and/or with only partial arc of a circle, and for circle detection in BGA inspection.展开更多
Using a fuzzy estimator to evaluate the fitness of chromosomes in a genetic algorithm and adaptively training it in the evolutionary process, the genetic algorithm with fuzzy fitness evaluation is proposed to reduce t...Using a fuzzy estimator to evaluate the fitness of chromosomes in a genetic algorithm and adaptively training it in the evolutionary process, the genetic algorithm with fuzzy fitness evaluation is proposed to reduce the computation time of the algorithm. An analysis on the optimization performance of the proposed algorithm shows that it maintains good performance with its computation time saved. Finally, simulation results on design of a fuzzy controller are presented.展开更多
In this paper we discuss a novel storage scheme for simultaneous memory access in parallel turbo decoder. The new scheme employs vertex coloring in graph theory. Compared to a similar method that also uses unnatural o...In this paper we discuss a novel storage scheme for simultaneous memory access in parallel turbo decoder. The new scheme employs vertex coloring in graph theory. Compared to a similar method that also uses unnatural order in storage, our scheme requires 25 more memory blocks but allows a simpler configuration for variable sizes of code lengths that can be implemented on-chip. Experiment shows that for a moderate to high decoding throughput (40-100 Mbps), the hardware cost is still affordable for 3GPP's (3rd generation partnership project) interleaver.展开更多
A new algorithm is proposed for underwater vehicles multi-path planning. This algorithm is based on fitness sharing genetic algorithm, clustering and evolution of multiple populations, which can keep the diversity of ...A new algorithm is proposed for underwater vehicles multi-path planning. This algorithm is based on fitness sharing genetic algorithm, clustering and evolution of multiple populations, which can keep the diversity of the solution path, and decrease the operating time because of the independent evolution of each subpopulation. The multi-path planning algorithm is demonstrated by a number of two-dimensional path planning problems. The results show that the multi-path planning algorithm has the following characteristics: high searching capability, rapid convergence and high reliability.展开更多
In a vehicular ad hoc network(VANET),a massive quantity of data needs to be transmitted on a large scale in shorter time durations.At the same time,vehicles exhibit high velocity,leading to more vehicle disconnections...In a vehicular ad hoc network(VANET),a massive quantity of data needs to be transmitted on a large scale in shorter time durations.At the same time,vehicles exhibit high velocity,leading to more vehicle disconnections.Both of these characteristics result in unreliable data communication in VANET.A vehicle clustering algorithm clusters the vehicles in groups employed in VANET to enhance network scalability and connection reliability.Clustering is considered one of the possible solutions for attaining effectual interaction in VANETs.But one such difficulty was reducing the cluster number under increasing transmitting nodes.This article introduces an Evolutionary Hide Objects Game Optimization based Distance Aware Clustering(EHOGO-DAC)Scheme for VANET.The major intention of the EHOGO-DAC technique is to portion the VANET into distinct sets of clusters by grouping vehicles.In addition,the DHOGO-EAC technique is mainly based on the HOGO algorithm,which is stimulated by old games,and the searching agent tries to identify hidden objects in a given space.The DHOGO-EAC technique derives a fitness function for the clustering process,including the total number of clusters and Euclidean distance.The experimental assessment of the DHOGO-EAC technique was carried out under distinct aspects.The comparison outcome stated the enhanced outcomes of the DHOGO-EAC technique compared to recent approaches.展开更多
Wireless Sensor Networks(WSN)has evolved into a key technology for ubiquitous living and the domain of interest has remained active in research owing to its extensive range of applications.In spite of this,it is chall...Wireless Sensor Networks(WSN)has evolved into a key technology for ubiquitous living and the domain of interest has remained active in research owing to its extensive range of applications.In spite of this,it is challenging to design energy-efficient WSN.The routing approaches are leveraged to reduce the utilization of energy and prolonging the lifespan of network.In order to solve the restricted energy problem,it is essential to reduce the energy utilization of data,transmitted from the routing protocol and improve network development.In this background,the current study proposes a novel Differential Evolution with Arithmetic Optimization Algorithm Enabled Multi-hop Routing Protocol(DEAOA-MHRP)for WSN.The aim of the proposed DEAOA-MHRP model is select the optimal routes to reach the destination in WSN.To accomplish this,DEAOA-MHRP model initially integrates the concepts of Different Evolution(DE)and Arithmetic Optimization Algorithms(AOA)to improve convergence rate and solution quality.Besides,the inclusion of DE in traditional AOA helps in overcoming local optima problems.In addition,the proposed DEAOA-MRP technique derives a fitness function comprising two input variables such as residual energy and distance.In order to ensure the energy efficient performance of DEAOA-MHRP model,a detailed comparative study was conducted and the results established its superior performance over recent approaches.展开更多
蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的...蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)上,融合蚁群算法和遗传算法,并将顾客时间窗宽度以及机器人等待时间加入蚁群算法状态转移公式中,以及将蚁群算法的解作为遗传算法的初始种群,提高遗传算法的初始解质量,然后进行编码,设置违反时间窗约束和载重量的惩罚函数和适应度函数,在传统遗传算法的交叉、变异操作后加入了破坏-修复基因的操作来优化每一代新解的质量,在Solomon Benchmark算例上进行仿真,对比算法改进前后的最优解,验证算法可行性。最后在餐厅送餐问题中把带有障碍物的仿真环境路径规划问题和VRPTW问题结合,使用改进后的算法解决餐厅环境下送餐机器人对顾客服务配送问题。展开更多
基金This project is supported by Research Foundation for Doctoral Program of Higher Education, China (No.98033532)
文摘The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features because the quality of modeling greatly depends on therepresentation of features. Some fitting techniques of natural quadric surfaces with least-squaresmethod are described. And these techniques can be directly used to extract quadric surfaces featuresduring the process of segmentation for point cloud.
基金This project is supported by the National Natural Science Foundation of China
文摘This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obtained in T = n(log2m + log2(n - r + 1) + 5) + log2m + 1 steps with P=mn processors when m × 2(n - 1) and with P = 2n(n - 1) processors otherwise.
文摘Order-recursive least-squares(ORLS)algorithms are applied to the prob-lems of estimation and identification of FIR or ARMA system parameters where a fixedset of input signal samples is available and the desired order of the underlying model isunknown.On the basis of several universal formulae for updating nonsymmetric projec-tion operators,this paper presents three kinds of LS algorithms,called nonsymmetric,symmetric and square root normalized fast ORLS algorithms,respectively.As to the au-thors’ knowledge,the first and the third have not been so far provided,and the second isone of those which have the lowest computational requirement.Several simplified versionsof the algorithms are also considered.
文摘Coal consumption curve of the thermal power plant can reflect the function relationship between the coal consumption of unit and load, which plays a key role for research on unit economic operation and load optimal dispatch. Now get coal consumption curve is generally obtained by least square method, but which are static curve and these curves remain unchanged for a long time, and make them are incompatible with the actual operation situation of the unit. Furthermore, coal consumption has the characteristics of typical nonlinear and time varying, sometimes the least square method does not work for nonlinear complex problems. For these problems, a method of coal consumption curve fitting of the thermal power plant units based on genetic algorithm is proposed. The residual analysis method is used for data detection;quadratic function is employed to the objective function;appropriate parameters such as initial population size, crossover rate and mutation rate are set;the unit’s actual coal consumption curves are fitted, and comparing the proposed method with least squares method, the results indicate that fitting effect of the former is better than the latter, and further indicate that the proposed method to do curve fitting can best approximate known data in a certain significance, and they can real-timely reflect the interdependence between power output and coal consumption.
基金supported by The National Key Research and Development Program of China (2021YFC3090304)The Fundamental Research Funds for the Central Universities,China University of Mining and Technology-Beijing (8000150A073).
文摘3D ground-penetrating radar has been widely used in urban road underground disease detection due to its nondestructive,efficient,and intuitive results.However,the 3D imaging of the underground target body presents the edge plate phenomenon due to the space between the 3D radar array antennas.Consequently,direct 3D imaging using detection results cannot reflect underground spatial distribution characteristics.Due to the wide-beam polarization of the ground-penetrating radar antenna,the emission of electromagnetic waves with a specific width decreases the strong middle energy on both sides gradually.Therefore,a bicubic high-precision 3D target body slice-imaging fitting algorithm with changing trend characteristics is constructed by combining the subsurface target characteristics with the changing spatial morphology trends.Using the wide-angle polarization antenna’s characteristics in the algorithm to build the trend factor between the measurement lines,the target body change trend and the edge detail portrayal achieve a 3D ground-penetrating radar-detection target high-precision fitting.Compared with other traditional fitting techniques,the fitting error is small.This paper conducts experiments and analyses on GpaMax 3D forward modeling and 3D ground-penetrating measured radar data.The experiments show that the improved bicubic fitting algorithm can eff ectively improve the accuracy of underground target slice imaging and the 3D ground-penetrating radar’s anomaly interpretation.
文摘The algorithm is divided into two steps. The first step pre-locates the blank by aligning its centre of gravity and approximate normal vector with those of destination surfaces, with largest overlap of projections of two objects on a plane perpendicular to the normal vector. The second step is optimizing an objective function by means of gradient-simulated annealing algorithm to get the best matching of a set of distributed points on the blank and destination surfaces. An example for machining hydroelectric turbine blades is given to verify the effectiveness of algorithm.
文摘In design science, these two kinds of problems are mutually nested, however, the nesting could not blind us for the fact that their problem-solving and solution justification methods are different. The ant algorithms research field, builds on the idea that the study of the behavior of ant colonies or other social insects is interesting, because it provides models of distributed organization which could be utilized as a source of inspiration for the design of optimization and distributed control algorithms. In this paper, a relatively new type of hybridizing ant search algorithm is developed, and the results are compared against other algorithms. The intelligence of this heuristic approach is not portrayed by individual ants, but rather is expressed by the colony as a whole inspired by labor division and brood sorting. This solution obtained by this method will be evaluated against the one obtained by other traditional heuristics.
基金Project(2013CB035504) supported by the National Basic Research Program of ChinaProject(2012zzts078) supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(2009ZX02038) supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China
文摘An intuitive method for circle fitting is proposed. Assuming an approximate circle(CA,n) for the fitting of some scattered points, it can be imagined that every point would apply a force to CA,n, which all together form an overall effect that "draws" CA,n towards best fitting to the group of points. The basic element of the force is called circular attracting factor(CAF) which is defined as a real scalar in a radial direction of CA,n. An iterative algorithm based on this idea is proposed, and the convergence and accuracy are analyzed. The algorithm converges uniformly which is proved by the analysis of Lyapunov function, and the accuracy of the algorithm is in accord with that of geometric least squares of circle fitting. The algorithm is adopted to circle detection in grayscale images, in which the transferring to binary images is not required, and thus the algorithm is less sensitive to lightening and background noise. The main point for the adaption is the calculation of CAF which is extended in radial directions of CA,n for the whole image. All pixels would apply forces to CA,n, and the overall effect of forces would be equivalent to a force from the centroid of pixels to CA,n. The forces from would-be edge pixels would overweigh that from noisy pixels, so the following approximate circle would be of better fitting. To reduce the amount of calculation, pixels are only used in an annular area including the boundary of CA,n just in between for the calculation of CAF. Examples are given, showing the process of circle fitting of scattered points around a circle from an initial assuming circle, comparing the fitting results for scattered points from some related literature, applying the method proposed for circular edge detection in grayscale images with noise, and/or with only partial arc of a circle, and for circle detection in BGA inspection.
文摘Using a fuzzy estimator to evaluate the fitness of chromosomes in a genetic algorithm and adaptively training it in the evolutionary process, the genetic algorithm with fuzzy fitness evaluation is proposed to reduce the computation time of the algorithm. An analysis on the optimization performance of the proposed algorithm shows that it maintains good performance with its computation time saved. Finally, simulation results on design of a fuzzy controller are presented.
基金supported by the National High-Technology Research and Development Program of China (Grant No.2003AA123310), and the National Natural Science Foundation of China (Grant Nos.60332030, 60572157)
文摘In this paper we discuss a novel storage scheme for simultaneous memory access in parallel turbo decoder. The new scheme employs vertex coloring in graph theory. Compared to a similar method that also uses unnatural order in storage, our scheme requires 25 more memory blocks but allows a simpler configuration for variable sizes of code lengths that can be implemented on-chip. Experiment shows that for a moderate to high decoding throughput (40-100 Mbps), the hardware cost is still affordable for 3GPP's (3rd generation partnership project) interleaver.
文摘A new algorithm is proposed for underwater vehicles multi-path planning. This algorithm is based on fitness sharing genetic algorithm, clustering and evolution of multiple populations, which can keep the diversity of the solution path, and decrease the operating time because of the independent evolution of each subpopulation. The multi-path planning algorithm is demonstrated by a number of two-dimensional path planning problems. The results show that the multi-path planning algorithm has the following characteristics: high searching capability, rapid convergence and high reliability.
基金This work was supported by the Ulsan City&Electronics and Telecommunications Research Institute(ETRI)grant funded by the Ulsan City[22AS1600,the development of intelligentization technology for the main industry for manufacturing innovation and Human-mobile-space autonomous collaboration intelligence technology development in industrial sites].
文摘In a vehicular ad hoc network(VANET),a massive quantity of data needs to be transmitted on a large scale in shorter time durations.At the same time,vehicles exhibit high velocity,leading to more vehicle disconnections.Both of these characteristics result in unreliable data communication in VANET.A vehicle clustering algorithm clusters the vehicles in groups employed in VANET to enhance network scalability and connection reliability.Clustering is considered one of the possible solutions for attaining effectual interaction in VANETs.But one such difficulty was reducing the cluster number under increasing transmitting nodes.This article introduces an Evolutionary Hide Objects Game Optimization based Distance Aware Clustering(EHOGO-DAC)Scheme for VANET.The major intention of the EHOGO-DAC technique is to portion the VANET into distinct sets of clusters by grouping vehicles.In addition,the DHOGO-EAC technique is mainly based on the HOGO algorithm,which is stimulated by old games,and the searching agent tries to identify hidden objects in a given space.The DHOGO-EAC technique derives a fitness function for the clustering process,including the total number of clusters and Euclidean distance.The experimental assessment of the DHOGO-EAC technique was carried out under distinct aspects.The comparison outcome stated the enhanced outcomes of the DHOGO-EAC technique compared to recent approaches.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/142/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R237)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR14).
文摘Wireless Sensor Networks(WSN)has evolved into a key technology for ubiquitous living and the domain of interest has remained active in research owing to its extensive range of applications.In spite of this,it is challenging to design energy-efficient WSN.The routing approaches are leveraged to reduce the utilization of energy and prolonging the lifespan of network.In order to solve the restricted energy problem,it is essential to reduce the energy utilization of data,transmitted from the routing protocol and improve network development.In this background,the current study proposes a novel Differential Evolution with Arithmetic Optimization Algorithm Enabled Multi-hop Routing Protocol(DEAOA-MHRP)for WSN.The aim of the proposed DEAOA-MHRP model is select the optimal routes to reach the destination in WSN.To accomplish this,DEAOA-MHRP model initially integrates the concepts of Different Evolution(DE)and Arithmetic Optimization Algorithms(AOA)to improve convergence rate and solution quality.Besides,the inclusion of DE in traditional AOA helps in overcoming local optima problems.In addition,the proposed DEAOA-MRP technique derives a fitness function comprising two input variables such as residual energy and distance.In order to ensure the energy efficient performance of DEAOA-MHRP model,a detailed comparative study was conducted and the results established its superior performance over recent approaches.
文摘蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)上,融合蚁群算法和遗传算法,并将顾客时间窗宽度以及机器人等待时间加入蚁群算法状态转移公式中,以及将蚁群算法的解作为遗传算法的初始种群,提高遗传算法的初始解质量,然后进行编码,设置违反时间窗约束和载重量的惩罚函数和适应度函数,在传统遗传算法的交叉、变异操作后加入了破坏-修复基因的操作来优化每一代新解的质量,在Solomon Benchmark算例上进行仿真,对比算法改进前后的最优解,验证算法可行性。最后在餐厅送餐问题中把带有障碍物的仿真环境路径规划问题和VRPTW问题结合,使用改进后的算法解决餐厅环境下送餐机器人对顾客服务配送问题。