期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
关于可测函数列积分的收敛性 被引量:1
1
作者 柴平分 《青海师范大学学报(自然科学版)》 1996年第2期13-17,共5页
积分号下取极限或逐项积分在理论和实际应用中都有十分重要的意义.本文在勒贝格积分极限理论基础上,研究在弱条件下极限与积分交换顺序问题.
关键词 勒贝格积分 可测函数列 极限定理 收敛性 积分
下载PDF
PROPERTIES OF SOLUTIONS OF n-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
2
作者 Linghai Zhang 《Annals of Applied Mathematics》 2019年第4期392-448,共57页
Consider the n-dimensional incompressible Navier-Stokes equations δ/(δt)u-α△u +(u ·△↓)u + △↓p = f(x, t), △↓· u = 0,△↓· f = 0,u(x, 0) = u0(x), △↓·u0=0.There exists a global weak soluti... Consider the n-dimensional incompressible Navier-Stokes equations δ/(δt)u-α△u +(u ·△↓)u + △↓p = f(x, t), △↓· u = 0,△↓· f = 0,u(x, 0) = u0(x), △↓·u0=0.There exists a global weak solution under some assumptions on the initial function and the external force. It is well known that the global weak solutions become sufficiently small and smooth after a long time. Here are several very interesting questions about the global weak solutions of the Cauchy problems for the n-dimensional incompressible Navier-Stokes equations.· Can we establish better decay estimates with sharp rates not only for the global weak solutions but also for all order derivatives of the global weak solutions?· Can we accomplish the exact limits of all order derivatives of the global weak solutions in terms of the given information?· Can we use the global smooth solution of the linear heat equation, with the same initial function and the external force, to approximate the global weak solutions of the Navier-Stokes equations?· If we drop the nonlinear terms in the Navier-Stokes equations, will the exact limits reduce to the exact limits of the solutions of the linear heat equation?· Will the exact limits of the derivatives of the global weak solutions of the Navier-Stokes equations and the exact limits of the derivatives of the global smooth solution of the heat equation increase at the same rate as the order m of the derivative increases? In another word, will the ratio of the exact limits for the derivatives of the global weak solutions of the Navier-Stokes equations be the same as the ratio of the exact limits for the derivatives of the global smooth solutions for the linear heat equation?The positive solutions to these questions obtained in this paper will definitely help us to better understand the properties of the global weak solutions of the incompressible Navier-Stokes equations and hopefully to discover new special structures of the Navier-Stokes equations. 展开更多
关键词 the n-dimensional incompressible Navier-Stokes equations decay estimates with sharp rates exact limits appropriate coupling of existing ideas and results Fourier transformation Parseval's identity lebesgue's dominated convergence theorem Gagliardo-Nirenberg's interpolation inequality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部