期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Improved Information Set Decoding Algorithms over Galois Ring in the Lee Metric
1
作者 LI Yu WANG Li-Ping 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2023年第3期1319-1335,共17页
The security of most code-based cryptosystems relies on the hardness of the syndrome decoding(SD) problem.The best solvers of the SD problem are known as information set,decoding(ISD) algorithms.Recently,Weger,et al.(... The security of most code-based cryptosystems relies on the hardness of the syndrome decoding(SD) problem.The best solvers of the SD problem are known as information set,decoding(ISD) algorithms.Recently,Weger,et al.(2020) described Stern’s ISD algorithm,s-blocks algorithm and partial Gaussian elimination algorithms in the Lee metric over an integer residue ring Z_(pm),where p is a prime number and m is a positive integer,and analyzed the time complexity.In this paper,the authors apply a binary ISD algorithm in the Hamming metric proposed by May,et al.(2011)to solve the SD problem over the Galois ring GR(p^(m),k) endowed with the Lee metric and provide a detailed complexity analysis.Compared with Stern’s algorithm over Zpmin the Lee metric,the proposed algorithm has a significant improvement in the time complexity. 展开更多
关键词 Galois ring information set decoding lee metric syndrome decoding
原文传递
环Z_q上的一类Lee度量BCH码
2
作者 黄甬钢 戚文峰 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2005年第S2期4-6,共3页
基于Lee度量对整数剩余类环Zq上的BCH码进行了研究,给出了Zq上一类(缩短)BCH码的构造方法并对其极小Lee距离作了分析,最后解决了它基于Lee度量的译码问题.
关键词 环上BCH码 lee度量 代数译码
下载PDF
Correction of CT Burst Array Errors in the Generalized-Lee-RT Spaces 被引量:1
3
作者 Sapna JAIN K.P.SHUM 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第8期1475-1484,共10页
In [Jain, S.: Array codes in the generalized-Lee-RT-pseudo-metric (the GLRTP-metric), to appear in Algebra Colloq.], Jain introduced a new pseudo-metric on the space Matm×s(Zq), the module space of all m ... In [Jain, S.: Array codes in the generalized-Lee-RT-pseudo-metric (the GLRTP-metric), to appear in Algebra Colloq.], Jain introduced a new pseudo-metric on the space Matm×s(Zq), the module space of all m × s matrices with entries from the finite ring Zq, generalized the classical Lee metric [Lee, C. Y.: Some properties of non-binary error correcting codes. IEEE Trans. Inform. Theory, IT-4, 77- 82 (1958)] and array RT-metric [Rosenbloom, M. Y., Tsfasman, M. A.: Codes for m-metric. Prob. Inf. Transm., 33, 45-52 (1997)] and named this pseudo-metric as the Generalized-Lee-RT-Pseudo-Metric (or the GLRTP-Metric). In this paper, we obtain some lower bounds for two-dimensional array codes correcting CT burst array errors [Jain, S.: CT bursts from classical to array coding. Discrete Math., 308-309, 1489-1499 (2008)] with weight constraints under the GLRTP-metric. 展开更多
关键词 Linear array codes lee metric RT metric CT burst array errors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部