In this paper, we present the electromagnetic analysis of a rectangular cavity partially filled with a left-handed material slab. Our theoretical investigation shows that there exist novel resonant modes in the cavity...In this paper, we present the electromagnetic analysis of a rectangular cavity partially filled with a left-handed material slab. Our theoretical investigation shows that there exist novel resonant modes in the cavity, and such a cavity becomes a subwavelength cavity. The eigenvalue equation of the cavity is derived and the resonant frequencies of the novel modes are calculated by using numerical simulation. We also discuss the stability of the novel resonant modes and show the best condition under which a useful rectangular cavity of subwavelength dimensions with tolerable stability is obtained.展开更多
The phenomena of super energy flows are studied theoretically and numerically in a parallel-plate waveguide which is filled with two layered equally-thick different media, i.e. air and specific left-handed materials ...The phenomena of super energy flows are studied theoretically and numerically in a parallel-plate waveguide which is filled with two layered equally-thick different media, i.e. air and specific left-handed materials (LHM) with εr1 = -1/(1 +δ) +iγ and μr1 = -(1 + δ) + iγ. In this special waveguide, two-directional super-energy flows are excited by a three-dimensional horizontal electric dipole at the same time, which has transmission patterns different from those of two-dimensional source and three-dimensional vertical electric dipole. We also show that the retardation and loss in LHM are sensitive to the amplitude of super power densities, and the dimensions of waveguide determine the propagating modes, which makes super energy flows more practical.展开更多
Transmission properties of fractal Cantor distribution with left-handed materials (LHM) are investigated. The transmittance and reflectance spectra can be calculated by using the optical transmission matrix method. ...Transmission properties of fractal Cantor distribution with left-handed materials (LHM) are investigated. The transmittance and reflectance spectra can be calculated by using the optical transmission matrix method. Comparing with the conventional Cantor multilayers, these structures with LHM have double functions of stopbands and defects. Through adjusting the thickness of dielectric layers, the properties of stopbands and defects can be obtained, respectively. For stopbands, a broad stopband filter is studied. For defect modes, multi-frequencies narrow passband filters are proposed.展开更多
This paper tackles the wave attenuation along with a cylindrical waveguides composed of a left Handed material (LHM), surrounded by a superconducting or metal wall. I used the transcendental equations for both TE and ...This paper tackles the wave attenuation along with a cylindrical waveguides composed of a left Handed material (LHM), surrounded by a superconducting or metal wall. I used the transcendental equations for both TE and TM waves. I found out that the waveguide supports backward TE and backward TM waves since both permittivity and magnetic permeability of LHM are negative. I also illustrated the dependence of the TE and TM wave attenuation on the wave frequency and the reduced temperature of the superconducting wall (T/Tc). Attenuation constant increases by increasing the wave frequency and it shows higher values at higher T/Tc. Lowest wave attenuation and the best confinement are achieved for the thickest TE waveguide. LHM-superconductor waveguide shows lower wave attenuation than LHM-metal waveguide.展开更多
An effective method to design structural Left-handed material(LHM) was proposed. A commercial finite element software HFSS and S-parameter retrieval method were used to determine the effective constitutive parameter...An effective method to design structural Left-handed material(LHM) was proposed. A commercial finite element software HFSS and S-parameter retrieval method were used to determine the effective constitutive parameters of the metamaterials, and topology optimization technique was introduced to design the microstructure configurations of the materials with desired electromagnetic characteristics. The material considered was a periodic array of dielectric substrates attached with metal film pieces. By controlling the arrangements of the metal film pieces in the design domain, the potential microstructure with desired electromagnetic characteristics can be obtained finally. Two different LHMs were obtained with maximum bandwidth of negative refraction, and the experimental results show that negative refractive indices appear while the metamaterials have simultaneously negative permittivity and negative permeability. Topology optimization technique is found to be an effective tool for configuration design of LHMs.展开更多
Based on the ABCD matrix formalism,the propagation property of an Airy beam from right-handed material(RHM) to left-handed material(LHM) is investigated.The result shows that when the Airy beam propagates in the L...Based on the ABCD matrix formalism,the propagation property of an Airy beam from right-handed material(RHM) to left-handed material(LHM) is investigated.The result shows that when the Airy beam propagates in the LHM,the intensity self-bending due to its propagation in the RHM can be compensated.In particular,if the propagation distance in the RHM is equal to that in the LHM and the refractive index of the LHM is n L =-1,the transverse intensity distribution of the Airy beam can return to its original state.展开更多
In this paper a comprehensive framework for treating the nonlinear propagation of ultrashort pulse in metamaterial with dispersive dielectric susceptibility and magnetic permeability is presented. Under the slowly-evo...In this paper a comprehensive framework for treating the nonlinear propagation of ultrashort pulse in metamaterial with dispersive dielectric susceptibility and magnetic permeability is presented. Under the slowly-evolving-wave approximation, a generalized (3+1)-dimensional wave equation first order in the propagation coordinate and suitable for both right-handed material (I^HM) and left-handed material (LHM) is derived. By the commonly used Drude dispersive model for LHM, a (3+1)-dimensional nonlinear Schrodinger equation describing ultrashort pulsed beam propagation in LHM is obtained, and its difference from that for conventional RHM is discussed. Particularly, the self-steeping effect of ultrashort pulse is found to be anomalous in LHM.展开更多
This paper reports on experimental study of the microwave properties of a composite material consisting of ferrite and copper wires. It finds that the slim ferrite rods can modify the magnetic field distribution throu...This paper reports on experimental study of the microwave properties of a composite material consisting of ferrite and copper wires. It finds that the slim ferrite rods can modify the magnetic field distribution through their anisotropy, so that the ferrite's negative influence on the copper wires' plasma will be reduced. Left-handed properties are observed even in the specimen with close stuck ferrite rods and copper wires.展开更多
Three-layer slab waveguide with left-handed materials (LHM) is discussed using the Maxwell's equations and their equations of dispersion relation for TM modes are obtained. By seeking the power of the slab waveguid...Three-layer slab waveguide with left-handed materials (LHM) is discussed using the Maxwell's equations and their equations of dispersion relation for TM modes are obtained. By seeking the power of the slab waveguide, their equations of effective thickness for TM modes are obtained. Furthermore, the interrelated equations for right-handed materials (RHM) slab waveguide are introduced and their curves plotted. To find new properties for LHM slab waveguide, the equations and their curves for the LHM and RHM slab waveguide are compared respectively.展开更多
In this work, we derived the modal dispersion relation for TEm modes for a symmetric slab waveguide constructed from SiO2 dielectric guiding core material with lossy left-handed material (LHM) as cladding and substrat...In this work, we derived the modal dispersion relation for TEm modes for a symmetric slab waveguide constructed from SiO2 dielectric guiding core material with lossy left-handed material (LHM) as cladding and substrate, and the power confinement factor. The dispersion relations and the power confinement factor were numerically solved for a given set of parameters: allowed frequency range;core’s thicknesses;and TEm mode order. We found that the real part of the effective refractive index decreased with thickness and frequency increase. Moreover, the imaginary part (extinction coefficient) of the effective refractive index has very small values for all thickness in the frequency ranges, which means the waveguide structure is transparent for the used frequencies. The waveguide structure offers good guiding power for all thickness in the frequency range with low power attenuation. The real part of the effective refractive index increases with the increase of mode order, and the power confinement factor decreases with the increase of mode order.展开更多
A theoretical investigation of field components for transverse electric mode in the parallel-plate waveguides has been studied. In this analysis two different types of waveguide structures have been discussed, i.e., ...A theoretical investigation of field components for transverse electric mode in the parallel-plate waveguides has been studied. In this analysis two different types of waveguide structures have been discussed, i.e., (a) normal good/perfect conducting parallel-plate waveguide filled with nonlinear left-handed material and (b) high-temperature-superconducting parallel-plate waveguide filled with nonlinear left-handed material. The dispersion relations of transverse electric mode have also been discussed for these two types of waveguide structures.展开更多
This paper derives the force of the electromagnetic radiation on left-handed materials (LHMs) by a direct application of the Lorentz law of classical electrodynamics. The expressions of radiation force are given for...This paper derives the force of the electromagnetic radiation on left-handed materials (LHMs) by a direct application of the Lorentz law of classical electrodynamics. The expressions of radiation force are given for TE-polarised and TM-polarised fields. The numerical results demonstrate that electromagnetic waves exert an inverse lateral radiation force on each edge of the beams, that is, the lateral pressure is expansive for TE-polarised beams and compressive for TM-polarised beams. The investigation of the radiation force will provide insights into the fundamental properties of LHMs and will provide to better understanding of the interaction of light with LHMs.展开更多
By applying the ABCD matrix method, we report the propagating properties of the rotating elliptical Gaussian beams(REGBs) from the right-handed material(RHM) to the left-handed material(LHM). Based on the propag...By applying the ABCD matrix method, we report the propagating properties of the rotating elliptical Gaussian beams(REGBs) from the right-handed material(RHM) to the left-handed material(LHM). Based on the propagation equation, we obtain the intensity distributions of the REGBs during the propagation. It is found that the rotating direction of the REGBs is opposite in the RHM and the LHM, and the rotation angles tend to be π /2 as the propagation distance is long enough.Then we analyze the relationship between the refractive index and the rotating velocity. Furthermore, the energy flow and the angular momentum(AM) of the REGBs which can rotate are also obtained.展开更多
This paper investigates the photon tunneling and transmittance resonance through a multi-layer structure including a left-handed material(LHM). An analytical expression for the transmittance in a five-layer structur...This paper investigates the photon tunneling and transmittance resonance through a multi-layer structure including a left-handed material(LHM). An analytical expression for the transmittance in a five-layer structure is given by the analytical transfer matrix method. The transmittance is studied as a function of the refractive index and the width of the LHM layer. The perfect photon tunneling results from the multi-layer structure, especially from the relation between the magnitude of the refractive index and the width of the LHM layer and those of the adjoining layers. Photons may tunnel through a much greater distance in this structure. Transmittance resonance happens, the peaks and valleys appear periodically at the resonance thickness. For an LHM with inherent losses, the perfect transmittance is suppressed.展开更多
Finite-difference time-domain(FDTD) method is used to simulate the propagation of electromagnetic wave in left-handed material slab(LHMs) with cold plasma model The effects of optical propagation in the left-handed ma...Finite-difference time-domain(FDTD) method is used to simulate the propagation of electromagnetic wave in left-handed material slab(LHMs) with cold plasma model The effects of optical propagation in the left-handed material compared to convex lens are discussed.The wider the LHMs is,the stronger electric field of focusing image in left-handed material slab is confirmed by the simulation with various slab length.However,the outer image point location would slightly moves to the LHMs side when the length of LHMs is reduced.展开更多
The surface wave dispersion relations of surface Plasmon at the interface of a left-handed material and a non-linear Kerr medium of arbitrary nonlinearity are derived based on a generalized first integral approach. Th...The surface wave dispersion relations of surface Plasmon at the interface of a left-handed material and a non-linear Kerr medium of arbitrary nonlinearity are derived based on a generalized first integral approach. The normalized power flow is also investigated for various values of frequency. The above study is conducted for both cases: self-focusing (α≺0) and de-focusing (α≻0) nonlinear Kerr coefficient.展开更多
We investigate the characteristics of electromagnetic wave reflection and transmission by multilayered structures consisting of a pair of left-handed material (LHM) and dielectric slabs inserted between two semi-infin...We investigate the characteristics of electromagnetic wave reflection and transmission by multilayered structures consisting of a pair of left-handed material (LHM) and dielectric slabs inserted between two semi-infinite dielectric media. The theoretical aspect is based on Maxwell's equations and matching the boundary conditions for the electric and magnetic fields of the incident waves at each layer interface. We calculate the reflected and transmitted powers of the multilayered structure taking into account the widths of the slabs and the frequency dependence of permittivity and permeability of the LHM. The obtained results satisfy the law of conservation of energy. We show that if the semi-infinite dielectric media have the same refractive index and the slabs have the same width, then the reflected (and transmitted) powers can be minimized (and maximized) and the powers-frequency curves show no ripple. On the other hand if the semi-infinite dielectric media have different values of refractive indices and the slabs have different widths, then under certain conditions the situation of minimum and maximum values of the mentioned powers will be reversed.展开更多
A four-layer slab waveguide including left-handed material is investigated numerically in this paper. Considering left-handed material dispersion, we find eight TE guided modes as frequency from 4 GHz to 6 GHz. The fu...A four-layer slab waveguide including left-handed material is investigated numerically in this paper. Considering left-handed material dispersion, we find eight TE guided modes as frequency from 4 GHz to 6 GHz. The fundamental mode can exist, and its dispersion curves are insensitive to the waveguide thickness. Besides, the total power fluxes of TE guided modes are analyzed and corresponding new properties are found, such as: positive and negative total power fluxes coexist;at maximum value of frequency, we find zero total power flux, etc. Our results may be of benefit to the optical waveguide technology.展开更多
This paper is concerned with the stability characteristics of nonlinear surface waves propagating along a left-handed substrate (LHM) and a non-linear dielectric cover. These characteristics have been simulated numeri...This paper is concerned with the stability characteristics of nonlinear surface waves propagating along a left-handed substrate (LHM) and a non-linear dielectric cover. These characteristics have been simulated numerically by using the perturbation method. The growth rate of perturbation is computed by solving the dispersion equation of perturbation. I found that the stability of nonlinear surface waves is affected by the frequency dependence of the electric permittivity εh and magnetic permeability μh of the LHM. The spatial evolution of the steady state field amplitude is determined by using computer simulation method. The calculations show that with increasing the effective refractive index nx at fixed saturation parameter μp, the field distribution is sharpened and concentrated in the nonlinear medium. The waves are stable of forward and backward behavior. At higher values of nx, attenuated backward waves are observed.展开更多
文摘In this paper, we present the electromagnetic analysis of a rectangular cavity partially filled with a left-handed material slab. Our theoretical investigation shows that there exist novel resonant modes in the cavity, and such a cavity becomes a subwavelength cavity. The eigenvalue equation of the cavity is derived and the resonant frequencies of the novel modes are calculated by using numerical simulation. We also discuss the stability of the novel resonant modes and show the best condition under which a useful rectangular cavity of subwavelength dimensions with tolerable stability is obtained.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60671015, 60225001 and 60621002)The State Key Development Program for Basic Research of China (Grant No 2004CB719802)the Doctorate Found of State Education Commission of China (Grant No 20040286010)
文摘The phenomena of super energy flows are studied theoretically and numerically in a parallel-plate waveguide which is filled with two layered equally-thick different media, i.e. air and specific left-handed materials (LHM) with εr1 = -1/(1 +δ) +iγ and μr1 = -(1 + δ) + iγ. In this special waveguide, two-directional super-energy flows are excited by a three-dimensional horizontal electric dipole at the same time, which has transmission patterns different from those of two-dimensional source and three-dimensional vertical electric dipole. We also show that the retardation and loss in LHM are sensitive to the amplitude of super power densities, and the dimensions of waveguide determine the propagating modes, which makes super energy flows more practical.
基金Project supported by the National Natural Science Foundation of China (Grant No.61077068)the Natural Science Foundation of Shanghai Municipality (Grant No.10ZR1411900)+1 种基金the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Science and Technology Commission of Shanghai Municipality (Grant No.08DZ2231100)
文摘Transmission properties of fractal Cantor distribution with left-handed materials (LHM) are investigated. The transmittance and reflectance spectra can be calculated by using the optical transmission matrix method. Comparing with the conventional Cantor multilayers, these structures with LHM have double functions of stopbands and defects. Through adjusting the thickness of dielectric layers, the properties of stopbands and defects can be obtained, respectively. For stopbands, a broad stopband filter is studied. For defect modes, multi-frequencies narrow passband filters are proposed.
文摘This paper tackles the wave attenuation along with a cylindrical waveguides composed of a left Handed material (LHM), surrounded by a superconducting or metal wall. I used the transcendental equations for both TE and TM waves. I found out that the waveguide supports backward TE and backward TM waves since both permittivity and magnetic permeability of LHM are negative. I also illustrated the dependence of the TE and TM wave attenuation on the wave frequency and the reduced temperature of the superconducting wall (T/Tc). Attenuation constant increases by increasing the wave frequency and it shows higher values at higher T/Tc. Lowest wave attenuation and the best confinement are achieved for the thickest TE waveguide. LHM-superconductor waveguide shows lower wave attenuation than LHM-metal waveguide.
基金Funded by the National Natural Science Foundation of China (Nos.90605002, 90816025 and 10721062)the National Basic Research Programof China (No. 2006CB601205)
文摘An effective method to design structural Left-handed material(LHM) was proposed. A commercial finite element software HFSS and S-parameter retrieval method were used to determine the effective constitutive parameters of the metamaterials, and topology optimization technique was introduced to design the microstructure configurations of the materials with desired electromagnetic characteristics. The material considered was a periodic array of dielectric substrates attached with metal film pieces. By controlling the arrangements of the metal film pieces in the design domain, the potential microstructure with desired electromagnetic characteristics can be obtained finally. Two different LHMs were obtained with maximum bandwidth of negative refraction, and the experimental results show that negative refractive indices appear while the metamaterials have simultaneously negative permittivity and negative permeability. Topology optimization technique is found to be an effective tool for configuration design of LHMs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60977068,61178015 and 11102100)the Youth Foundation of Sanming University,China (Grant No. B201008/Q)
文摘Based on the ABCD matrix formalism,the propagation property of an Airy beam from right-handed material(RHM) to left-handed material(LHM) is investigated.The result shows that when the Airy beam propagates in the LHM,the intensity self-bending due to its propagation in the RHM can be compensated.In particular,if the propagation distance in the RHM is equal to that in the LHM and the refractive index of the LHM is n L =-1,the transverse intensity distribution of the Airy beam can return to its original state.
基金Supported by the National Natural Science Foundation of China (Grant Nos 10576012 and 60538010), the Program for New Century Excellent Talents in University and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20040532005).
文摘In this paper a comprehensive framework for treating the nonlinear propagation of ultrashort pulse in metamaterial with dispersive dielectric susceptibility and magnetic permeability is presented. Under the slowly-evolving-wave approximation, a generalized (3+1)-dimensional wave equation first order in the propagation coordinate and suitable for both right-handed material (I^HM) and left-handed material (LHM) is derived. By the commonly used Drude dispersive model for LHM, a (3+1)-dimensional nonlinear Schrodinger equation describing ultrashort pulsed beam propagation in LHM is obtained, and its difference from that for conventional RHM is discussed. Particularly, the self-steeping effect of ultrashort pulse is found to be anomalous in LHM.
基金Project supported by the National Natural Science Foundation of China (Grant No 50702005)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No 20070008027)the Beijing Municipal Commission of Education (Grant No SYS100080419)
文摘This paper reports on experimental study of the microwave properties of a composite material consisting of ferrite and copper wires. It finds that the slim ferrite rods can modify the magnetic field distribution through their anisotropy, so that the ferrite's negative influence on the copper wires' plasma will be reduced. Left-handed properties are observed even in the specimen with close stuck ferrite rods and copper wires.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.T0102)
文摘Three-layer slab waveguide with left-handed materials (LHM) is discussed using the Maxwell's equations and their equations of dispersion relation for TM modes are obtained. By seeking the power of the slab waveguide, their equations of effective thickness for TM modes are obtained. Furthermore, the interrelated equations for right-handed materials (RHM) slab waveguide are introduced and their curves plotted. To find new properties for LHM slab waveguide, the equations and their curves for the LHM and RHM slab waveguide are compared respectively.
文摘In this work, we derived the modal dispersion relation for TEm modes for a symmetric slab waveguide constructed from SiO2 dielectric guiding core material with lossy left-handed material (LHM) as cladding and substrate, and the power confinement factor. The dispersion relations and the power confinement factor were numerically solved for a given set of parameters: allowed frequency range;core’s thicknesses;and TEm mode order. We found that the real part of the effective refractive index decreased with thickness and frequency increase. Moreover, the imaginary part (extinction coefficient) of the effective refractive index has very small values for all thickness in the frequency ranges, which means the waveguide structure is transparent for the used frequencies. The waveguide structure offers good guiding power for all thickness in the frequency range with low power attenuation. The real part of the effective refractive index increases with the increase of mode order, and the power confinement factor decreases with the increase of mode order.
基金Project supported by Pakistan Science Foundation(Project No.PSF/Res/P-PU/Phys(131))
文摘A theoretical investigation of field components for transverse electric mode in the parallel-plate waveguides has been studied. In this analysis two different types of waveguide structures have been discussed, i.e., (a) normal good/perfect conducting parallel-plate waveguide filled with nonlinear left-handed material and (b) high-temperature-superconducting parallel-plate waveguide filled with nonlinear left-handed material. The dispersion relations of transverse electric mode have also been discussed for these two types of waveguide structures.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974063)the Research Foundation of Wuhan National Laboratory (Grant No. P080008)the National "973" Project (Grant No. 2007CB310403)
文摘This paper derives the force of the electromagnetic radiation on left-handed materials (LHMs) by a direct application of the Lorentz law of classical electrodynamics. The expressions of radiation force are given for TE-polarised and TM-polarised fields. The numerical results demonstrate that electromagnetic waves exert an inverse lateral radiation force on each edge of the beams, that is, the lateral pressure is expansive for TE-polarised beams and compressive for TM-polarised beams. The investigation of the radiation force will provide insights into the fundamental properties of LHMs and will provide to better understanding of the interaction of light with LHMs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374108 and 10904041)the Foundation for the Author of Guangdong Provincial Excellent Doctoral Dissertation(Grant No.SYBZZXM201227)+4 种基金the Foundation of Cultivating Outstanding Young Scholars("ThousandHundredTen"Program)of Guangdong Province in Chinathe Fund from the CAS Key Laboratory of Geospace EnvironmentUniversity of Science and Technology of China
文摘By applying the ABCD matrix method, we report the propagating properties of the rotating elliptical Gaussian beams(REGBs) from the right-handed material(RHM) to the left-handed material(LHM). Based on the propagation equation, we obtain the intensity distributions of the REGBs during the propagation. It is found that the rotating direction of the REGBs is opposite in the RHM and the LHM, and the rotation angles tend to be π /2 as the propagation distance is long enough.Then we analyze the relationship between the refractive index and the rotating velocity. Furthermore, the energy flow and the angular momentum(AM) of the REGBs which can rotate are also obtained.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60877055 and 60806041)the Innovation Funds for Graduates of Shanghai University,China (Grant No. SHUCX102016)
文摘This paper investigates the photon tunneling and transmittance resonance through a multi-layer structure including a left-handed material(LHM). An analytical expression for the transmittance in a five-layer structure is given by the analytical transfer matrix method. The transmittance is studied as a function of the refractive index and the width of the LHM layer. The perfect photon tunneling results from the multi-layer structure, especially from the relation between the magnitude of the refractive index and the width of the LHM layer and those of the adjoining layers. Photons may tunnel through a much greater distance in this structure. Transmittance resonance happens, the peaks and valleys appear periodically at the resonance thickness. For an LHM with inherent losses, the perfect transmittance is suppressed.
基金Supported by the National Natural Science Foundation of China(60601028)
文摘Finite-difference time-domain(FDTD) method is used to simulate the propagation of electromagnetic wave in left-handed material slab(LHMs) with cold plasma model The effects of optical propagation in the left-handed material compared to convex lens are discussed.The wider the LHMs is,the stronger electric field of focusing image in left-handed material slab is confirmed by the simulation with various slab length.However,the outer image point location would slightly moves to the LHMs side when the length of LHMs is reduced.
文摘The surface wave dispersion relations of surface Plasmon at the interface of a left-handed material and a non-linear Kerr medium of arbitrary nonlinearity are derived based on a generalized first integral approach. The normalized power flow is also investigated for various values of frequency. The above study is conducted for both cases: self-focusing (α≺0) and de-focusing (α≻0) nonlinear Kerr coefficient.
文摘We investigate the characteristics of electromagnetic wave reflection and transmission by multilayered structures consisting of a pair of left-handed material (LHM) and dielectric slabs inserted between two semi-infinite dielectric media. The theoretical aspect is based on Maxwell's equations and matching the boundary conditions for the electric and magnetic fields of the incident waves at each layer interface. We calculate the reflected and transmitted powers of the multilayered structure taking into account the widths of the slabs and the frequency dependence of permittivity and permeability of the LHM. The obtained results satisfy the law of conservation of energy. We show that if the semi-infinite dielectric media have the same refractive index and the slabs have the same width, then the reflected (and transmitted) powers can be minimized (and maximized) and the powers-frequency curves show no ripple. On the other hand if the semi-infinite dielectric media have different values of refractive indices and the slabs have different widths, then under certain conditions the situation of minimum and maximum values of the mentioned powers will be reversed.
文摘A four-layer slab waveguide including left-handed material is investigated numerically in this paper. Considering left-handed material dispersion, we find eight TE guided modes as frequency from 4 GHz to 6 GHz. The fundamental mode can exist, and its dispersion curves are insensitive to the waveguide thickness. Besides, the total power fluxes of TE guided modes are analyzed and corresponding new properties are found, such as: positive and negative total power fluxes coexist;at maximum value of frequency, we find zero total power flux, etc. Our results may be of benefit to the optical waveguide technology.
文摘This paper is concerned with the stability characteristics of nonlinear surface waves propagating along a left-handed substrate (LHM) and a non-linear dielectric cover. These characteristics have been simulated numerically by using the perturbation method. The growth rate of perturbation is computed by solving the dispersion equation of perturbation. I found that the stability of nonlinear surface waves is affected by the frequency dependence of the electric permittivity εh and magnetic permeability μh of the LHM. The spatial evolution of the steady state field amplitude is determined by using computer simulation method. The calculations show that with increasing the effective refractive index nx at fixed saturation parameter μp, the field distribution is sharpened and concentrated in the nonlinear medium. The waves are stable of forward and backward behavior. At higher values of nx, attenuated backward waves are observed.