For left truncated and right censored model, letF n be the product-limit estimate and φ a nonnegative measurable function. The almost sure limits of the cumulative hazard function based onF n pd the integral ∫ ?dF n...For left truncated and right censored model, letF n be the product-limit estimate and φ a nonnegative measurable function. The almost sure limits of the cumulative hazard function based onF n pd the integral ∫ ?dF n are given. The results are useful in establishing strong consistent results of various estimates. For left truncated data, similar results were obtained in literature.展开更多
For the model with both left truncation and right censoring,suppose all the distributions are continuous. It is proved that the sampled cumulative hazard function Λ n and the product-limit estimate F n are stro...For the model with both left truncation and right censoring,suppose all the distributions are continuous. It is proved that the sampled cumulative hazard function Λ n and the product-limit estimate F n are strong consistent. For any nonnegative measurable , the almost sure convergences of ∫d Λ n and ∫dF n to the true values ∫d Λ and ∫dF respectively are obtained.The strong consistency of the estimator for the truncation probability is proved.展开更多
In this article the authors establish the Bahadur type representations for the kernel quantileestimator and the kernel estimator of the derivatives of the quantile function on the basis of lefttruncated and right cens...In this article the authors establish the Bahadur type representations for the kernel quantileestimator and the kernel estimator of the derivatives of the quantile function on the basis of lefttruncated and right censored data. Under suitable conditions, with probability one, the exactconvergence rate of the remainder term in the representations is obtained. As a by-product, theLIL, the asymptotic normality for those kernel estimators are derived.展开更多
基金the National Natural Science Foundation of China (Grant No. 19971006) .
文摘For left truncated and right censored model, letF n be the product-limit estimate and φ a nonnegative measurable function. The almost sure limits of the cumulative hazard function based onF n pd the integral ∫ ?dF n are given. The results are useful in establishing strong consistent results of various estimates. For left truncated data, similar results were obtained in literature.
文摘For the model with both left truncation and right censoring,suppose all the distributions are continuous. It is proved that the sampled cumulative hazard function Λ n and the product-limit estimate F n are strong consistent. For any nonnegative measurable , the almost sure convergences of ∫d Λ n and ∫dF n to the true values ∫d Λ and ∫dF respectively are obtained.The strong consistency of the estimator for the truncation probability is proved.
文摘In this article the authors establish the Bahadur type representations for the kernel quantileestimator and the kernel estimator of the derivatives of the quantile function on the basis of lefttruncated and right censored data. Under suitable conditions, with probability one, the exactconvergence rate of the remainder term in the representations is obtained. As a by-product, theLIL, the asymptotic normality for those kernel estimators are derived.