In this paper, the evaluation of discretely sampled Asian options was considered by numerically solving the associated partial differential equations with the Legendre spectral method. Double average options were disc...In this paper, the evaluation of discretely sampled Asian options was considered by numerically solving the associated partial differential equations with the Legendre spectral method. Double average options were discussed as examples. The problem is a parabolic one on a finite domain whose equation degenerates into ordinary differential equations on the boundaries. A fully discrete scheme was established by using the Legendre spectral method in space and the Crank-Nicolson finite difference scheme in time. The stability and convergence of the scheme were analyzed. Numerical results show that the method can keep the spectral accuracy in space for such degenerate problems.展开更多
In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis sh...In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis shows that the postproeess improves the order of convergence. Consequently, we obtain asymptotically exact aposteriori error estimators based on the postprocessing results. Numerical examples are included to illustrate the theoretical analysis.展开更多
A Legendre-Legendre spectral collocation scheme is constructed for Korteweg-de Vries(KdV)equation on bounded domain by using the Legendre collocation method in both time and space,which is a nonlinear matrix equation ...A Legendre-Legendre spectral collocation scheme is constructed for Korteweg-de Vries(KdV)equation on bounded domain by using the Legendre collocation method in both time and space,which is a nonlinear matrix equation that is changed to a nonlinear systems and can be solved by the usual fixed point iteration.Numerical results demonstrate the efficiency of the method and spectral accuracy.展开更多
In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem...In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control.展开更多
In this work,we concern with the numerical approach for delay differential equations with random coefficients.We first show that the exact solution of the problem considered admits good regularity in the random space,...In this work,we concern with the numerical approach for delay differential equations with random coefficients.We first show that the exact solution of the problem considered admits good regularity in the random space,provided that the given data satisfy some reasonable assumptions.A stochastic collocation method is proposed to approximate the solution in the random space,and we use the Legendre spectral collocation method to solve the resulting deterministic delay differential equations.Convergence property of the proposed method is analyzed.It is shown that the numerical method yields the familiar exponential order of convergence in both the random space and the time space.Numerical examples are given to illustrate the theoretical results.展开更多
文摘In this paper, the evaluation of discretely sampled Asian options was considered by numerically solving the associated partial differential equations with the Legendre spectral method. Double average options were discussed as examples. The problem is a parabolic one on a finite domain whose equation degenerates into ordinary differential equations on the boundaries. A fully discrete scheme was established by using the Legendre spectral method in space and the Crank-Nicolson finite difference scheme in time. The stability and convergence of the scheme were analyzed. Numerical results show that the method can keep the spectral accuracy in space for such degenerate problems.
基金supported partially by the innovation fund of Shanghai Normal Universitysupported partially by NSERC of Canada under Grant OGP0046726.
文摘In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis shows that the postproeess improves the order of convergence. Consequently, we obtain asymptotically exact aposteriori error estimators based on the postprocessing results. Numerical examples are included to illustrate the theoretical analysis.
基金Supported by National Natural Science Foundation of China(Grant Nos.11771299,11371123)Natural Science Foundation of Henan Province(Grant No.202300410156).
文摘A Legendre-Legendre spectral collocation scheme is constructed for Korteweg-de Vries(KdV)equation on bounded domain by using the Legendre collocation method in both time and space,which is a nonlinear matrix equation that is changed to a nonlinear systems and can be solved by the usual fixed point iteration.Numerical results demonstrate the efficiency of the method and spectral accuracy.
基金the National Basic Research Programthe National Natural Science Foundation of China(Grant No.2005CB321703)+2 种基金Scientific Research Fund of Hunan Provincial Education Departmentthe Outstanding Youth Scientist of the National Natural Science Foundation of China(Grant No.10625106)the National Basic Research Program of China(Grant No.2005CB321701)
文摘In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control.
基金the National Natural Science Foundation of China(No.91130003 and No.11201461).
文摘In this work,we concern with the numerical approach for delay differential equations with random coefficients.We first show that the exact solution of the problem considered admits good regularity in the random space,provided that the given data satisfy some reasonable assumptions.A stochastic collocation method is proposed to approximate the solution in the random space,and we use the Legendre spectral collocation method to solve the resulting deterministic delay differential equations.Convergence property of the proposed method is analyzed.It is shown that the numerical method yields the familiar exponential order of convergence in both the random space and the time space.Numerical examples are given to illustrate the theoretical results.