The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ...The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.展开更多
A Legendre rational spectral method is proposed for the nonlinear Klein-Gordon equation on the whole line. Its stability and convergence are proved. Numerical results coincides well with the theoretical analysis and d...A Legendre rational spectral method is proposed for the nonlinear Klein-Gordon equation on the whole line. Its stability and convergence are proved. Numerical results coincides well with the theoretical analysis and demonstrate the e?ciency of this approach.展开更多
A spectral method based on the Legendre polynomials for solving Helmholz equations was proposed. With an explicit formula for the Legendre polynomials in terms of arbitrary order of their derivatives, the successive i...A spectral method based on the Legendre polynomials for solving Helmholz equations was proposed. With an explicit formula for the Legendre polynomials in terms of arbitrary order of their derivatives, the successive integration of the Legendre polynomials was represented by the Legendre polynomials. Then the method was formulized for secondorder differential equations in one dimension and two dimensions. Numerical results indicate that the suggested method is significantly accurate and in satisfactory agreement with the exact solution.展开更多
This paper presents discontinuous Legendre wavelet Galerkin (DLWG) approach for solving one-dimensional advection-diffusion equation (ADE). Variational formulation of this type equation and corresponding numerical flu...This paper presents discontinuous Legendre wavelet Galerkin (DLWG) approach for solving one-dimensional advection-diffusion equation (ADE). Variational formulation of this type equation and corresponding numerical fluxes are devised by utilizing the advantages of both the Legendre wavelet bases and discontinuous Galerkin (DG) method. The distinctive features of the proposed method are its simple applicability for a variety of boundary conditions and able to effectively approximate the solution of PDEs with less storage space and execution. The results of a numerical experiment are provided to verify the efficiency of the designed new technique.展开更多
In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it f...In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it for solving the non-stiff initial value problems, being the continuous interpolant derived and collocated at grid and off-grid points. Numerical examples of ordinary differential equations (ODEs) are solved using the proposed methods to show the validity and the accuracy of the introduced algorithms. A comparison with fourth-order Runge-Kutta method is given. The ob-tained numerical results reveal that the proposed method is efficient.展开更多
In this paper, a numerical method for solving the optimal control (OC) problems is presented. The method is enlightened by the Chebyshev-Legendre (CL) method for solving the partial differential equations (PDEs)...In this paper, a numerical method for solving the optimal control (OC) problems is presented. The method is enlightened by the Chebyshev-Legendre (CL) method for solving the partial differential equations (PDEs). The Legendre expansions are used to approximate both the control and the state functions. The constraints are discretized over the Chebyshev-Gauss-Lobatto (CGL) collocation points. A Legendre technique is used to approximate the integral involved in the performance index. The OC problem is changed into an equivalent nonlinear programming problem which is directly solved. The fast Legendre transform is employed to reduce the computation time. Several further illustrative examples demonstrate the efficiency of the proposed method.展开更多
In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multi-order fractional differential equations (M-FDEs). The fractional derivative is described in the Caput...In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multi-order fractional differential equations (M-FDEs). The fractional derivative is described in the Caputo sense. The study is conducted through illustrative example to demonstrate the validity and applicability of the presented method. The results reveal that the proposed method is very effective and simple. Moreover, only a small number of shifted Legendre polynomials are needed to obtain a satisfactory result.展开更多
In this paper, the evaluation of discretely sampled Asian options was considered by numerically solving the associated partial differential equations with the Legendre spectral method. Double average options were disc...In this paper, the evaluation of discretely sampled Asian options was considered by numerically solving the associated partial differential equations with the Legendre spectral method. Double average options were discussed as examples. The problem is a parabolic one on a finite domain whose equation degenerates into ordinary differential equations on the boundaries. A fully discrete scheme was established by using the Legendre spectral method in space and the Crank-Nicolson finite difference scheme in time. The stability and convergence of the scheme were analyzed. Numerical results show that the method can keep the spectral accuracy in space for such degenerate problems.展开更多
In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis sh...In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis shows that the postproeess improves the order of convergence. Consequently, we obtain asymptotically exact aposteriori error estimators based on the postprocessing results. Numerical examples are included to illustrate the theoretical analysis.展开更多
In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic co...In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic convergence and error equation are proved theoretically, and demonstrated numerically. Several numerical examples for solving the system of nonlinear equations and boundary-value problems of nonlinear ordinary differential equations (ODEs) are provided to illustrate the efficiency and performance of the suggested iterative methods.展开更多
文摘The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.
基金This work is supported in part by NSF of China, N.10471095, SF of Shanghai N.04JC14062, The Fund of ChineseEducation Ministry N.20040270002, The Shanghai Leading Academic Discipline Project N. T0401, The Funds forE-institutes of Universities N.E03004 and The special Funds for Major Specialities and N.04DB15 of ShanghaiEducation Commission.
文摘A Legendre rational spectral method is proposed for the nonlinear Klein-Gordon equation on the whole line. Its stability and convergence are proved. Numerical results coincides well with the theoretical analysis and demonstrate the e?ciency of this approach.
基金Project supported by the National Natural Science Foundation of China (Grant No.10471472)
文摘A spectral method based on the Legendre polynomials for solving Helmholz equations was proposed. With an explicit formula for the Legendre polynomials in terms of arbitrary order of their derivatives, the successive integration of the Legendre polynomials was represented by the Legendre polynomials. Then the method was formulized for secondorder differential equations in one dimension and two dimensions. Numerical results indicate that the suggested method is significantly accurate and in satisfactory agreement with the exact solution.
文摘This paper presents discontinuous Legendre wavelet Galerkin (DLWG) approach for solving one-dimensional advection-diffusion equation (ADE). Variational formulation of this type equation and corresponding numerical fluxes are devised by utilizing the advantages of both the Legendre wavelet bases and discontinuous Galerkin (DG) method. The distinctive features of the proposed method are its simple applicability for a variety of boundary conditions and able to effectively approximate the solution of PDEs with less storage space and execution. The results of a numerical experiment are provided to verify the efficiency of the designed new technique.
文摘In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it for solving the non-stiff initial value problems, being the continuous interpolant derived and collocated at grid and off-grid points. Numerical examples of ordinary differential equations (ODEs) are solved using the proposed methods to show the validity and the accuracy of the introduced algorithms. A comparison with fourth-order Runge-Kutta method is given. The ob-tained numerical results reveal that the proposed method is efficient.
基金supported by the National Natural Science Foundation of China (Grant Nos.10471089,60874039)the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘In this paper, a numerical method for solving the optimal control (OC) problems is presented. The method is enlightened by the Chebyshev-Legendre (CL) method for solving the partial differential equations (PDEs). The Legendre expansions are used to approximate both the control and the state functions. The constraints are discretized over the Chebyshev-Gauss-Lobatto (CGL) collocation points. A Legendre technique is used to approximate the integral involved in the performance index. The OC problem is changed into an equivalent nonlinear programming problem which is directly solved. The fast Legendre transform is employed to reduce the computation time. Several further illustrative examples demonstrate the efficiency of the proposed method.
文摘In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multi-order fractional differential equations (M-FDEs). The fractional derivative is described in the Caputo sense. The study is conducted through illustrative example to demonstrate the validity and applicability of the presented method. The results reveal that the proposed method is very effective and simple. Moreover, only a small number of shifted Legendre polynomials are needed to obtain a satisfactory result.
文摘In this paper, the evaluation of discretely sampled Asian options was considered by numerically solving the associated partial differential equations with the Legendre spectral method. Double average options were discussed as examples. The problem is a parabolic one on a finite domain whose equation degenerates into ordinary differential equations on the boundaries. A fully discrete scheme was established by using the Legendre spectral method in space and the Crank-Nicolson finite difference scheme in time. The stability and convergence of the scheme were analyzed. Numerical results show that the method can keep the spectral accuracy in space for such degenerate problems.
基金supported partially by the innovation fund of Shanghai Normal Universitysupported partially by NSERC of Canada under Grant OGP0046726.
文摘In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis shows that the postproeess improves the order of convergence. Consequently, we obtain asymptotically exact aposteriori error estimators based on the postprocessing results. Numerical examples are included to illustrate the theoretical analysis.
文摘In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic convergence and error equation are proved theoretically, and demonstrated numerically. Several numerical examples for solving the system of nonlinear equations and boundary-value problems of nonlinear ordinary differential equations (ODEs) are provided to illustrate the efficiency and performance of the suggested iterative methods.