期刊文献+
共找到262篇文章
< 1 2 14 >
每页显示 20 50 100
Legendre-Weighted Residual Methods for System of Fractional Order Differential Equations
1
作者 Umme Ruman Md. Shafiqul Islam 《Journal of Applied Mathematics and Physics》 2024年第9期3163-3184,共22页
The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ... The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations. 展开更多
关键词 Fractional Differential Equations System of Fractional Order BVPs Weighted Residual methods Modified legendre Polynomials
下载PDF
缔合Legendre函数的快速插值计算及其在六边形网格模型重力异常计算中的应用
2
作者 李新星 范昊鹏 +2 位作者 万宏发 范雕 冯进凯 《测绘学报》 EI CSCD 北大核心 2024年第9期1737-1747,共11页
鉴于局部区域非等纬度分布点的超高阶次球谐综合计算效率较低,本文深入研究了缔合Legendre函数的插值算法,结合模型重力异常求解的展开式,提出了超高阶模型空间重力异常插值快速计算方法,为了验证本文方法在东西狭长分布的点集更具有应... 鉴于局部区域非等纬度分布点的超高阶次球谐综合计算效率较低,本文深入研究了缔合Legendre函数的插值算法,结合模型重力异常求解的展开式,提出了超高阶模型空间重力异常插值快速计算方法,为了验证本文方法在东西狭长分布的点集更具有应用优势,采用球谐旋转变换技术进一步提升了计算效率。试验结果表明,利用2160阶次EGM2008模型计算日本地区同一高度的30303个非等纬度分布的六边形网格点处模型重力异常,插值快速计算方法相比逐点计算,在误差不超±0.005 mGal水平下,计算耗时从3669.41 s缩减到98.05 s,同时经过球谐旋转变换,将南北狭长的日本区域点集旋转为东西狭长分布,使得上述相应计算内容的耗时进一步由98.05 s缩减到19.06 s,计算效率相比最初方法提速比达到近200倍,有效解决了非等纬度分布点的超高阶模型重力异常快速解算的效率难题,且验证了该方法在东西狭长分布的情况下具有更高的提速比。 展开更多
关键词 地球重力场模型 球谐综合 勒让德函数 六边形网格 球谐旋转变换 插值方法
下载PDF
Legendre Rational Spectral Method for Nonlinear Klein-Gordon Equation 被引量:3
3
作者 Zhongqing Wang Benyu Guo 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2006年第2期143-149,共7页
A Legendre rational spectral method is proposed for the nonlinear Klein-Gordon equation on the whole line. Its stability and convergence are proved. Numerical results coincides well with the theoretical analysis and d... A Legendre rational spectral method is proposed for the nonlinear Klein-Gordon equation on the whole line. Its stability and convergence are proved. Numerical results coincides well with the theoretical analysis and demonstrate the e?ciency of this approach. 展开更多
关键词 勒让德有理数光谱方法 非线性方程 克莱因-戈登方程 收敛 稳定性
下载PDF
变系数Volterra型积分微分方程的2种Legendre谱Galerkin数值积分方法
4
作者 范友康 张克磊 覃永辉 《桂林电子科技大学学报》 2024年第1期68-74,共7页
为了进一步提高求解Volterra型积分微分的数值精度,针对一种变系数Volterra型积分微分方程,提出了2种Legendre谱Galerkin数值积分法。采用Galerkin Legendre数值积分对Volterra型积分微分方程的积分项进行预处理,对其构造Legendre tau格... 为了进一步提高求解Volterra型积分微分的数值精度,针对一种变系数Volterra型积分微分方程,提出了2种Legendre谱Galerkin数值积分法。采用Galerkin Legendre数值积分对Volterra型积分微分方程的积分项进行预处理,对其构造Legendre tau格式,同时用Chebyshev-Gauss-Lobatto配置点对变系数和积分项部分进行计算,并通过对方程的定义区间进行分解,提出了一种多区间Legendre谱Galerkin数值积分法。该方法的格式对于奇数阶模型具有对称结构。此外,通过引入Volterra型积分微分方程的最小二乘函数,构造了Legendre谱Galerkin最小二乘数值积分法。该方法对应的代数方程系数矩阵是对称正定的。数值算例验证了这2种Legendre谱Galerkin数值积分方法的高阶精度和有效性。 展开更多
关键词 积分微分方程 数值积分 Chebyshev-Gauss-Lobatto插值 最小二乘法 legendre Galerkin
下载PDF
Legendre expansion method for Helmholz equations
5
作者 赵廷刚 马和平 《Journal of Shanghai University(English Edition)》 CAS 2008年第1期15-19,共5页
A spectral method based on the Legendre polynomials for solving Helmholz equations was proposed. With an explicit formula for the Legendre polynomials in terms of arbitrary order of their derivatives, the successive i... A spectral method based on the Legendre polynomials for solving Helmholz equations was proposed. With an explicit formula for the Legendre polynomials in terms of arbitrary order of their derivatives, the successive integration of the Legendre polynomials was represented by the Legendre polynomials. Then the method was formulized for secondorder differential equations in one dimension and two dimensions. Numerical results indicate that the suggested method is significantly accurate and in satisfactory agreement with the exact solution. 展开更多
关键词 legendre polynomials spectral methods COLLOCATION Helmholz equation
下载PDF
Discontinuous Legendre Wavelet Galerkin Method for One-Dimensional Advection-Diffusion Equation
6
作者 Xiaoyang Zheng Zhengyuan Wei 《Applied Mathematics》 2015年第9期1581-1591,共11页
This paper presents discontinuous Legendre wavelet Galerkin (DLWG) approach for solving one-dimensional advection-diffusion equation (ADE). Variational formulation of this type equation and corresponding numerical flu... This paper presents discontinuous Legendre wavelet Galerkin (DLWG) approach for solving one-dimensional advection-diffusion equation (ADE). Variational formulation of this type equation and corresponding numerical fluxes are devised by utilizing the advantages of both the Legendre wavelet bases and discontinuous Galerkin (DG) method. The distinctive features of the proposed method are its simple applicability for a variety of boundary conditions and able to effectively approximate the solution of PDEs with less storage space and execution. The results of a numerical experiment are provided to verify the efficiency of the designed new technique. 展开更多
关键词 ADVECTION-DIFFUSION Equation legendre WAVELET DISCONTINUOUS GALERKIN method DISCONTINUOUS legendre WAVELET GALERKIN method
下载PDF
A Block Procedure with Linear Multi-Step Methods Using Legendre Polynomials for Solving ODEs
7
作者 Khadijah M. Abualnaja 《Applied Mathematics》 2015年第4期717-723,共7页
In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it f... In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it for solving the non-stiff initial value problems, being the continuous interpolant derived and collocated at grid and off-grid points. Numerical examples of ordinary differential equations (ODEs) are solved using the proposed methods to show the validity and the accuracy of the introduced algorithms. A comparison with fourth-order Runge-Kutta method is given. The ob-tained numerical results reveal that the proposed method is efficient. 展开更多
关键词 COLLOCATION methods with legendre POLYNOMIALS Initial Value Problems Perturbation Function FOURTH-ORDER RUNGE-KUTTA method
下载PDF
Chebyshev-Legendre method for discretizing optimal control problems
8
作者 张稳 马和平 《Journal of Shanghai University(English Edition)》 CAS 2009年第2期113-118,共6页
In this paper, a numerical method for solving the optimal control (OC) problems is presented. The method is enlightened by the Chebyshev-Legendre (CL) method for solving the partial differential equations (PDEs)... In this paper, a numerical method for solving the optimal control (OC) problems is presented. The method is enlightened by the Chebyshev-Legendre (CL) method for solving the partial differential equations (PDEs). The Legendre expansions are used to approximate both the control and the state functions. The constraints are discretized over the Chebyshev-Gauss-Lobatto (CGL) collocation points. A Legendre technique is used to approximate the integral involved in the performance index. The OC problem is changed into an equivalent nonlinear programming problem which is directly solved. The fast Legendre transform is employed to reduce the computation time. Several further illustrative examples demonstrate the efficiency of the proposed method. 展开更多
关键词 optimal control (OC) the Chebyshev-legendre (CL) method fast legendre transform nonlinear programming Chebyshev-Gauss-Lobatto (CGL) node
下载PDF
Solving a Nonlinear Multi-Order Fractional Differential Equation Using Legendre Pseudo-Spectral Method
9
作者 Yin Yang 《Applied Mathematics》 2013年第1期113-118,共6页
In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multi-order fractional differential equations (M-FDEs). The fractional derivative is described in the Caput... In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multi-order fractional differential equations (M-FDEs). The fractional derivative is described in the Caputo sense. The study is conducted through illustrative example to demonstrate the validity and applicability of the presented method. The results reveal that the proposed method is very effective and simple. Moreover, only a small number of shifted Legendre polynomials are needed to obtain a satisfactory result. 展开更多
关键词 legendre Pseudo-Spectral method Multi-Order FRACTIONAL DIFFERENTIAL EQUATIONS Caputo DERIVATIVE
下载PDF
Evaluation of Double Average Asian Options by the Legendre Spectral Method
10
作者 盛慧莉 马和平 《Journal of Shanghai University(English Edition)》 CAS 2003年第3期206-213,共8页
In this paper, the evaluation of discretely sampled Asian options was considered by numerically solving the associated partial differential equations with the Legendre spectral method. Double average options were disc... In this paper, the evaluation of discretely sampled Asian options was considered by numerically solving the associated partial differential equations with the Legendre spectral method. Double average options were discussed as examples. The problem is a parabolic one on a finite domain whose equation degenerates into ordinary differential equations on the boundaries. A fully discrete scheme was established by using the Legendre spectral method in space and the Crank-Nicolson finite difference scheme in time. The stability and convergence of the scheme were analyzed. Numerical results show that the method can keep the spectral accuracy in space for such degenerate problems. 展开更多
关键词 double average Asian options discretely sampled arithmetic Asian options legendre spectral method degenerate parabolic problem.
下载PDF
A-Posteriori Error Estimation for the Legendre Spectral Galerkin Method in One-Dimension
11
作者 Lijun Yi Benqi Guo 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第1期40-52,共13页
In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis sh... In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis shows that the postproeess improves the order of convergence. Consequently, we obtain asymptotically exact aposteriori error estimators based on the postprocessing results. Numerical examples are included to illustrate the theoretical analysis. 展开更多
关键词 legendre spectral Galerkin method two-point boundary value problem SUPERCONVERGENCE a-posteriori error estimation.
下载PDF
Gauss-Legendre Iterative Methods and Their Applications on Nonlinear Systems and BVP-ODEs
12
作者 Zhongli Liu Guoqing Sun 《Journal of Applied Mathematics and Physics》 2016年第11期2038-2046,共9页
In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic co... In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic convergence and error equation are proved theoretically, and demonstrated numerically. Several numerical examples for solving the system of nonlinear equations and boundary-value problems of nonlinear ordinary differential equations (ODEs) are provided to illustrate the efficiency and performance of the suggested iterative methods. 展开更多
关键词 Iterative method Gauss-legendre Quadrature Formula Nonlinear Systems Third-Order Convergence Nonlinear ODEs
下载PDF
基于Legendre伪谱法的固体运载火箭轨迹优化研究 被引量:9
13
作者 宣颖 张为华 张育林 《固体火箭技术》 EI CAS CSCD 北大核心 2008年第5期425-429,共5页
Legendre法则是一种高阶积分近似法则,用较大积分步长得到较高精度。以结点伪谱法处理不连续问题后,可以把一个无限维的动态最优控制问题转化为有限维的静态优化问题,大大降低了问题复杂性。将其应用于轨迹优化,力求使其成为一种求轨迹... Legendre法则是一种高阶积分近似法则,用较大积分步长得到较高精度。以结点伪谱法处理不连续问题后,可以把一个无限维的动态最优控制问题转化为有限维的静态优化问题,大大降低了问题复杂性。将其应用于轨迹优化,力求使其成为一种求轨迹优化问题的通用算法。以三级固体运载火箭为例,在惯性直角坐标系中建立动力学模型,给出轨迹优化模型。轨迹优化算例结果验证了Legendre伪谱法在弹道时间和精度优化的正确性和有效性。 展开更多
关键词 固体运载火箭 轨迹优化 legendre伪谱法
下载PDF
基于Legendre伪谱法的卫星轨道转移燃料最优控制 被引量:2
14
作者 梅杰 马广富 杨博 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2010年第3期352-357,共6页
以真近点角为自变量,介绍了形式简单的卫星相对运动动力学模型,给出了和真近点角相匹配的性能指标.利用伪谱法将最优控制问题转化为参数优化问题,以状态转移矩阵为基础给出了仅以初末状态为约束的最优控制律,然后针对线性化模型,给出了... 以真近点角为自变量,介绍了形式简单的卫星相对运动动力学模型,给出了和真近点角相匹配的性能指标.利用伪谱法将最优控制问题转化为参数优化问题,以状态转移矩阵为基础给出了仅以初末状态为约束的最优控制律,然后针对线性化模型,给出了以状态方程为约束的最优控制律.设计的控制律均为解析形式,不需要利用NPL算法进行计算.仿真结果表明设计的控制律是有效的. 展开更多
关键词 燃料最优控制 相对轨道转移 legendre伪谱法 椭圆轨道
下载PDF
Legendre函数法求解分数阶偏微分方程的数值解 被引量:5
15
作者 朱帅 解加全 吴世跃 《工程数学学报》 CSCD 北大核心 2018年第5期570-578,共9页
分数阶偏微分方程作为一类常见的微分方程用以描述工程等实际问题.较传统的解析方法而言,本文提出的数值算法在计算精度及计算效率上有更大的优势.借助分数阶Legendre函数对待求方程中的二元函数进行级数展开,并结合算子矩阵将待求方程... 分数阶偏微分方程作为一类常见的微分方程用以描述工程等实际问题.较传统的解析方法而言,本文提出的数值算法在计算精度及计算效率上有更大的优势.借助分数阶Legendre函数对待求方程中的二元函数进行级数展开,并结合算子矩阵将待求方程转化为非线性代数方程组,然后通过数学软件求解该方程组,获得原方程的数值解.本文介绍的分数阶Legendre函数法能更精确的模拟工程问题中一些复杂的数学现象,而且在函数推导及构造上都比较简单,很小的级数展开就能达到满意的数值精度.最后给出的误差分析也验证了该方法的收敛性. 展开更多
关键词 分数阶legendre函数 算子矩阵 分数阶偏微分方程 数值解 Tau方法
下载PDF
基于Legendre伪谱法的远程最优拦截初制导方法 被引量:3
16
作者 谭丽芬 闫野 +1 位作者 周英 唐国金 《系统工程与电子技术》 EI CSCD 北大核心 2011年第6期1337-1341,共5页
考虑J2摄动,研究远程最优拦截初制导问题。针对远程拦截飞行时间长的特点,深入分析并改进一种固定时间拦截制导的摄动修正方法,提出J2摄动远程脉冲最优拦截策略。基于一种求解最优控制问题的新方法——Legendre伪谱法(Legendre pseudosp... 考虑J2摄动,研究远程最优拦截初制导问题。针对远程拦截飞行时间长的特点,深入分析并改进一种固定时间拦截制导的摄动修正方法,提出J2摄动远程脉冲最优拦截策略。基于一种求解最优控制问题的新方法——Legendre伪谱法(Legendre pseudospectral method,LPM),研究有限推力远程最优拦截初制导问题,给出有限推力远程最优拦截初制导方法。以小倾角大椭圆轨道机动飞行器为对象,进行优化计算。仿真结果说明了本文的最优初制导方法的精度和计算效率。 展开更多
关键词 远程最优拦截 有限推力初制导 legendre伪谱法 椭圆轨道机动飞行器
下载PDF
时间分数阶扩散方程的并行高效Legendre谱方法 被引量:3
17
作者 陈红斌 马甲迎 刘晓奇 《中南林业科技大学学报》 CAS CSCD 北大核心 2011年第1期148-152,共5页
研究了两类时间分数阶扩散方程的并行高效Legendre谱方法,分数阶导数分别代替标准的扩散方程的二阶空间导数和一阶时间导数。空间方向采用高效的Legendre谱方法,时间方向使用了基于Fourier级数展开的Laplace数值逆,并对其参数进行了优... 研究了两类时间分数阶扩散方程的并行高效Legendre谱方法,分数阶导数分别代替标准的扩散方程的二阶空间导数和一阶时间导数。空间方向采用高效的Legendre谱方法,时间方向使用了基于Fourier级数展开的Laplace数值逆,并对其参数进行了优化。给出了两类时间分数阶扩散程的数值格式和数值例子,与其他方法比,该方法数值结果更优。 展开更多
关键词 时间分数阶扩散方程 legendre谱方法 Fourier级数展开 Laplace数值逆 参数优化 数值例子
下载PDF
基于Legendre伪谱法的UGV避障路径规划 被引量:3
18
作者 李耀宇 朱一凡 李群 《指挥控制与仿真》 2012年第4期124-127,共4页
针对传统优化方法不易解决含有复杂动力学约束的路径规划问题,提出利用勒让德伪谱法(Legendre Pseudospectral Method,LPM)对地面无人驾驶器(unmanned ground vehicle,UGV)的避障路径规划进行研究。通过建立UGV的动力学模型和障碍物模型... 针对传统优化方法不易解决含有复杂动力学约束的路径规划问题,提出利用勒让德伪谱法(Legendre Pseudospectral Method,LPM)对地面无人驾驶器(unmanned ground vehicle,UGV)的避障路径规划进行研究。通过建立UGV的动力学模型和障碍物模型,整合了基于LPM的路径约束条件。最后应用以LPM为基础开发的MATLAB插件包DIDO,计算得出了优化路径。仿真实验中以UGV移动路径规划为例,设计实现了UGV的避障规划。仿真结果表明此方法具有较快的计算速度和准确性。 展开更多
关键词 地面无人驾驶器 路径规划 勒让德伪谱法
下载PDF
Chebyshev-Legendre拟谱方法解非经典抛物型方程 被引量:2
19
作者 赵廷刚 《兰州理工大学学报》 CAS 北大核心 2006年第2期147-149,共3页
利用Chebyshev-Legendre拟谱方法数值求解了一类非经典抛物型方程,同时利用罚方法处理边界条件,得到了精度更高的数值结果.
关键词 非经典抛物型方程 拟谱方法 Chebyshev-legendre 罚方法
下载PDF
第二类Volterra型积分方程的Chebyshev-Legendre谱配置方法 被引量:3
20
作者 吴华 徐玲芳 《应用数学与计算数学学报》 2014年第2期175-188,共14页
提出了一种新的求解第二类线性Volterra型积分方程的Chebyshev谱配置方法.该方法分别对方程中积分部分的核函数和未知函数在Chebyshev-Gauss-Lobatto点上进行插值,通过Chebyshev-Legendre变换,把插值多项式表示成Legendre级数形式,从而... 提出了一种新的求解第二类线性Volterra型积分方程的Chebyshev谱配置方法.该方法分别对方程中积分部分的核函数和未知函数在Chebyshev-Gauss-Lobatto点上进行插值,通过Chebyshev-Legendre变换,把插值多项式表示成Legendre级数形式,从而将积分转换为内积的形式,再利用Legendre多项式的正交性进行计算.利用Chebyshev插值算子在不带权范数意义下的逼近结果,对该方法在理论上给出了L∞范数意义下的误差估计,并通过数值算例验证了算法的有效性和理论分析的正确性. 展开更多
关键词 第二类Volterra型积分方程 Chebyshev-legendre谱配置方法 收敛性分析
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部