In this manuscript,an algorithm for the computation of numerical solutions to some variable order fractional differential equations(FDEs)subject to the boundary and initial conditions is developed.We use shifted Legen...In this manuscript,an algorithm for the computation of numerical solutions to some variable order fractional differential equations(FDEs)subject to the boundary and initial conditions is developed.We use shifted Legendre polynomials for the required numerical algorithm to develop some operational matrices.Further,operational matrices are constructed using variable order differentiation and integration.We are finding the operationalmatrices of variable order differentiation and integration by omitting the discretization of data.With the help of aforesaid matrices,considered FDEs are converted to algebraic equations of Sylvester type.Finally,the algebraic equations we get are solved with the help of mathematical software like Matlab or Mathematica to compute numerical solutions.Some examples are given to check the proposed method’s accuracy and graphical representations.Exact and numerical solutions are also compared in the paper for some examples.The efficiency of the method can be enhanced further by increasing the scale level.展开更多
The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ...The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.展开更多
In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order linear partial differential equations. Our approach consists of reducing the problem to a set of linear...In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order linear partial differential equations. Our approach consists of reducing the problem to a set of linear equations by expanding the approximate solution in terms of shifted Legendre polynomials with unknown coefficients. The performance of presented method has been compared with other methods, namely Sinc-Galerkin, quadratic spline collocation and LiuLin method. Numerical examples show better accuracy of the proposed method. Moreover, the computation cost decreases at least by a factor of 6 in this method.展开更多
Using the technique of integration within an ordered product of operators and the intermediate coordinatemomentum representation in quantum optics, as well as the excited squeezed state we derive a new form of Legendr...Using the technique of integration within an ordered product of operators and the intermediate coordinatemomentum representation in quantum optics, as well as the excited squeezed state we derive a new form of Legendre polynomials.展开更多
In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it f...In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it for solving the non-stiff initial value problems, being the continuous interpolant derived and collocated at grid and off-grid points. Numerical examples of ordinary differential equations (ODEs) are solved using the proposed methods to show the validity and the accuracy of the introduced algorithms. A comparison with fourth-order Runge-Kutta method is given. The ob-tained numerical results reveal that the proposed method is efficient.展开更多
In this article we explore the kinematics of a point-like charged particle placed within the interior plane of a charged ring. Analytically we formulate the electric field of the ring along a representative diagonal. ...In this article we explore the kinematics of a point-like charged particle placed within the interior plane of a charged ring. Analytically we formulate the electric field of the ring along a representative diagonal. Graph of the field as a function of the distance from the center of the ring assists foreseeing oscillating movement of the charged particle. We formulate the equation of motion;this is a nonlinear differential equation. Applying Computer Algebra System (CAS), specifically Mathematica [1] we solve the equation numerically. Utilizing the solution we quantify the kinematic quantities of interest including oscillations period. Although the equation of motion is nonlinear its period is regulated. For better understanding we take an advantage of Mathematica animation features animating the nonlinear oscillations.展开更多
In machines learning problems, Support Vector Machine is a method of classification. For non-linearly separable data, kernel functions are a basic ingredient in the SVM technic. In this paper, we briefly recall some u...In machines learning problems, Support Vector Machine is a method of classification. For non-linearly separable data, kernel functions are a basic ingredient in the SVM technic. In this paper, we briefly recall some useful results on decomposition of RKHS. Based on orthogonal polynomial theory and Mercer theorem, we construct the high power Legendre polynomial kernel on the cube [-1,1]<sup>d</sup>. Following presentation of the theoretical background of SVM, we evaluate the performance of this kernel on some illustrative examples in comparison with Rbf, linear and polynomial kernels.展开更多
For every astronomical instrument, the operating conditions are undoubtedly different from those defined in a setup experiment. Besides environmental conditions, the drives, the electronic cabinets containing heaters ...For every astronomical instrument, the operating conditions are undoubtedly different from those defined in a setup experiment. Besides environmental conditions, the drives, the electronic cabinets containing heaters and fans introduce disturbances that must be taken into account already in the preliminary design phase. Such disturbances can be identified as being mostly of two types: heat sources/sinks or cooling systems responsible for heat transfer via conduction, radiation, free and forced convection on one side and random and periodic vibrations on the other. For this reason, a key role already from the very beginning of the design process is played by integrated model merging the outcomes based on a Finite Element Model from thermo-structural and modal analysis into the optical model to estimate the aberrations. The current paper presents the status of such model, capable of analyzing the deformed surfaces deriving from both thermo-structural and vibrational analyses and measuring their effect in terms of optical aberrations by fitting them by Zernike and Legendre polynomial fitting respectively for circular and rectangular apertures. The independent contribution of each aberration is satisfied by the orthogonality of the polynomials and mesh uniformity.展开更多
In expansions of arbitrary functions in Bessel functions or Spherical Bessel functions, a dual partner set of polynomials play a role. For the Bessel functions, these are the Chebyshev polynomials of first kind and fo...In expansions of arbitrary functions in Bessel functions or Spherical Bessel functions, a dual partner set of polynomials play a role. For the Bessel functions, these are the Chebyshev polynomials of first kind and for the Spherical Bessel functions the Legendre polynomials. These two sets of functions appear in many formulas of the expansion and in the completeness and (bi)-orthogonality relations. The analogy to expansions of functions in Taylor series and in moment series and to expansions in Hermite functions is elaborated. Besides other special expansion, we find the expansion of Bessel functions in Spherical Bessel functions and their inversion and of Chebyshev polynomials of first kind in Legendre polynomials and their inversion. For the operators which generate the Spherical Bessel functions from a basic Spherical Bessel function, the normally ordered (or disentangled) form is found.展开更多
In this paper, we prove Legendre’s conjecture: There is a prime number between n<sup>2</sup> and (n +1)<sup>2</sup> for every positive integer n. We also prove three related conjectures. The m...In this paper, we prove Legendre’s conjecture: There is a prime number between n<sup>2</sup> and (n +1)<sup>2</sup> for every positive integer n. We also prove three related conjectures. The method that we use is to analyze binomial coefficients. It is developed by the author from the method of analyzing binomial central coefficients, that was used by Paul Erdős in his proof of Bertrand’s postulate - Chebyshev’s theorem.展开更多
Part variation characterization is essential to analyze the variation propagation in flexible assemblies. Aiming at two governing types of surface variation,warping and waviness,a comprehensive approach of geometric c...Part variation characterization is essential to analyze the variation propagation in flexible assemblies. Aiming at two governing types of surface variation,warping and waviness,a comprehensive approach of geometric covariance modeling based on hybrid polynomial approximation and spectrum analysis is proposed,which can formulate the level and the correlation of surface variations accurately. Firstly,the form error data of compliant part is acquired by CMM. Thereafter,a Fourier-Legendre polynomial decomposition is conducted and the error data are approximated by a Legendre polynomial series. The weighting coefficient of each component is decided by least square method for extracting the warping from the surface variation. Consequently,a geometrical covariance expression for warping deformation is established. Secondly,a Fourier-sinusoidal decomposition is utilized to approximate the waviness from the residual error data. The spectrum is analyzed is to identify the frequency and the amplitude of error data. Thus,a geometrical covariance expression for the waviness is deduced. Thirdly,a comprehensive geometric covariance model for surface variation is developed by the combination the Legendre polynomials with the sinusoidal polynomials. Finally,a group of L-shape sheet metals is measured along a specific contour,and the covariance of the profile errors is modeled by the proposed method. Thereafter,the result is compared with the covariance from two other methods and the real data. The result shows that the proposed covariance model can match the real surface error effectively and represents a tighter approximation error compared with the referred methods.展开更多
基金Supporting Project No.(PNURSP2022R 14),Princess Nourah bint A bdurahman University,Riyadh,Saudi Arabia.
文摘In this manuscript,an algorithm for the computation of numerical solutions to some variable order fractional differential equations(FDEs)subject to the boundary and initial conditions is developed.We use shifted Legendre polynomials for the required numerical algorithm to develop some operational matrices.Further,operational matrices are constructed using variable order differentiation and integration.We are finding the operationalmatrices of variable order differentiation and integration by omitting the discretization of data.With the help of aforesaid matrices,considered FDEs are converted to algebraic equations of Sylvester type.Finally,the algebraic equations we get are solved with the help of mathematical software like Matlab or Mathematica to compute numerical solutions.Some examples are given to check the proposed method’s accuracy and graphical representations.Exact and numerical solutions are also compared in the paper for some examples.The efficiency of the method can be enhanced further by increasing the scale level.
文摘The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.
文摘In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order linear partial differential equations. Our approach consists of reducing the problem to a set of linear equations by expanding the approximate solution in terms of shifted Legendre polynomials with unknown coefficients. The performance of presented method has been compared with other methods, namely Sinc-Galerkin, quadratic spline collocation and LiuLin method. Numerical examples show better accuracy of the proposed method. Moreover, the computation cost decreases at least by a factor of 6 in this method.
文摘Using the technique of integration within an ordered product of operators and the intermediate coordinatemomentum representation in quantum optics, as well as the excited squeezed state we derive a new form of Legendre polynomials.
文摘In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it for solving the non-stiff initial value problems, being the continuous interpolant derived and collocated at grid and off-grid points. Numerical examples of ordinary differential equations (ODEs) are solved using the proposed methods to show the validity and the accuracy of the introduced algorithms. A comparison with fourth-order Runge-Kutta method is given. The ob-tained numerical results reveal that the proposed method is efficient.
文摘In this article we explore the kinematics of a point-like charged particle placed within the interior plane of a charged ring. Analytically we formulate the electric field of the ring along a representative diagonal. Graph of the field as a function of the distance from the center of the ring assists foreseeing oscillating movement of the charged particle. We formulate the equation of motion;this is a nonlinear differential equation. Applying Computer Algebra System (CAS), specifically Mathematica [1] we solve the equation numerically. Utilizing the solution we quantify the kinematic quantities of interest including oscillations period. Although the equation of motion is nonlinear its period is regulated. For better understanding we take an advantage of Mathematica animation features animating the nonlinear oscillations.
文摘In machines learning problems, Support Vector Machine is a method of classification. For non-linearly separable data, kernel functions are a basic ingredient in the SVM technic. In this paper, we briefly recall some useful results on decomposition of RKHS. Based on orthogonal polynomial theory and Mercer theorem, we construct the high power Legendre polynomial kernel on the cube [-1,1]<sup>d</sup>. Following presentation of the theoretical background of SVM, we evaluate the performance of this kernel on some illustrative examples in comparison with Rbf, linear and polynomial kernels.
文摘For every astronomical instrument, the operating conditions are undoubtedly different from those defined in a setup experiment. Besides environmental conditions, the drives, the electronic cabinets containing heaters and fans introduce disturbances that must be taken into account already in the preliminary design phase. Such disturbances can be identified as being mostly of two types: heat sources/sinks or cooling systems responsible for heat transfer via conduction, radiation, free and forced convection on one side and random and periodic vibrations on the other. For this reason, a key role already from the very beginning of the design process is played by integrated model merging the outcomes based on a Finite Element Model from thermo-structural and modal analysis into the optical model to estimate the aberrations. The current paper presents the status of such model, capable of analyzing the deformed surfaces deriving from both thermo-structural and vibrational analyses and measuring their effect in terms of optical aberrations by fitting them by Zernike and Legendre polynomial fitting respectively for circular and rectangular apertures. The independent contribution of each aberration is satisfied by the orthogonality of the polynomials and mesh uniformity.
文摘In expansions of arbitrary functions in Bessel functions or Spherical Bessel functions, a dual partner set of polynomials play a role. For the Bessel functions, these are the Chebyshev polynomials of first kind and for the Spherical Bessel functions the Legendre polynomials. These two sets of functions appear in many formulas of the expansion and in the completeness and (bi)-orthogonality relations. The analogy to expansions of functions in Taylor series and in moment series and to expansions in Hermite functions is elaborated. Besides other special expansion, we find the expansion of Bessel functions in Spherical Bessel functions and their inversion and of Chebyshev polynomials of first kind in Legendre polynomials and their inversion. For the operators which generate the Spherical Bessel functions from a basic Spherical Bessel function, the normally ordered (or disentangled) form is found.
文摘In this paper, we prove Legendre’s conjecture: There is a prime number between n<sup>2</sup> and (n +1)<sup>2</sup> for every positive integer n. We also prove three related conjectures. The method that we use is to analyze binomial coefficients. It is developed by the author from the method of analyzing binomial central coefficients, that was used by Paul Erdős in his proof of Bertrand’s postulate - Chebyshev’s theorem.
基金Supported by the National Natural Science Foundation of China(50905084,51275236)the Aeronautical Science Foundation of China(2010ZE52054)
文摘Part variation characterization is essential to analyze the variation propagation in flexible assemblies. Aiming at two governing types of surface variation,warping and waviness,a comprehensive approach of geometric covariance modeling based on hybrid polynomial approximation and spectrum analysis is proposed,which can formulate the level and the correlation of surface variations accurately. Firstly,the form error data of compliant part is acquired by CMM. Thereafter,a Fourier-Legendre polynomial decomposition is conducted and the error data are approximated by a Legendre polynomial series. The weighting coefficient of each component is decided by least square method for extracting the warping from the surface variation. Consequently,a geometrical covariance expression for warping deformation is established. Secondly,a Fourier-sinusoidal decomposition is utilized to approximate the waviness from the residual error data. The spectrum is analyzed is to identify the frequency and the amplitude of error data. Thus,a geometrical covariance expression for the waviness is deduced. Thirdly,a comprehensive geometric covariance model for surface variation is developed by the combination the Legendre polynomials with the sinusoidal polynomials. Finally,a group of L-shape sheet metals is measured along a specific contour,and the covariance of the profile errors is modeled by the proposed method. Thereafter,the result is compared with the covariance from two other methods and the real data. The result shows that the proposed covariance model can match the real surface error effectively and represents a tighter approximation error compared with the referred methods.