利用Leggett-Williams不动点定理,并赋予f,g一定的增长条件,证明了二阶多点微分方程组边值问题u″+f(t,u,v)=0,v″+g(t,u,v)=0,0 t 1,u(0)=v(0)=0,u(1)-∑n-2i=1kiu(ξi)=0,v(1)-∑m-2i=1liv(ηi)=0,至少存在三对正解,其中f,g:[0,1]...利用Leggett-Williams不动点定理,并赋予f,g一定的增长条件,证明了二阶多点微分方程组边值问题u″+f(t,u,v)=0,v″+g(t,u,v)=0,0 t 1,u(0)=v(0)=0,u(1)-∑n-2i=1kiu(ξi)=0,v(1)-∑m-2i=1liv(ηi)=0,至少存在三对正解,其中f,g:[0,1]×[0,∞)×[0,∞)→[0,∞)是连续的.展开更多
基金Supported by the Anhui Provincial Nature Science Foundation(090416237,1208085MA13)the Research Fund for the Doctoral Program of Higher Education(20103401120002,20113401110001)+1 种基金the 211 Project of Anhui University(02303129,KJTD002B,02303303-33030011,02303902-39020011)the Foundation of Anhui Education Bureau(KJ2012A019)
文摘利用Leggett-Williams不动点定理,并赋予f,g一定的增长条件,证明了二阶多点微分方程组边值问题u″+f(t,u,v)=0,v″+g(t,u,v)=0,0 t 1,u(0)=v(0)=0,u(1)-∑n-2i=1kiu(ξi)=0,v(1)-∑m-2i=1liv(ηi)=0,至少存在三对正解,其中f,g:[0,1]×[0,∞)×[0,∞)→[0,∞)是连续的.