This study was carried out to assess the relationship of the status of nodulation(i.e., the number of nodules, their shape and size) in root and biomass production of plant growth parameters(i.e., number of leaves, ro...This study was carried out to assess the relationship of the status of nodulation(i.e., the number of nodules, their shape and size) in root and biomass production of plant growth parameters(i.e., number of leaves, root and shoot lengths, root biomass and shoot biomass) in Albizia saman and Leucaena leucocephala. The assessment started 60 days after seeding. The study revealed that nodulation response and biomass production in both species showed significant differences over time(p < 0.05) in all variables except in the root-shoot ratio(oven-dry) of L. leucocephala. The study also showed significant differences(p < 0.05) in nodule formation and biomass production at the end of the study period between the two species except in the number of nodules and leaves and the green root-shoot ratio. There were strong positive correlations between nodule formation and biomass production, i.e., the number of nodules and the age of plants, the number of nodules and leaves, as well as the number of nodules and biomass(root biomass and shoot biomass) in both species. The results obtained using principal component analysis(PCA) and correlation coefficients of the different characteristics of nodulation and biomass production were similar in both species. The PCA showed that shoot biomass(shoot green weight and shoot oven-dry weight) is positively correlated with PC1(with an eigenvalue of 7.50) and root length is positively correlated with PC2(with an eigenvalue of 0.19) in the case of A. saman. In the case of L. leucocephala, the PCA revealed that root biomass(root green weight and root oven-dry weight), shoot biomass and shoot length are also positively correlated with PC1, while nodule formation and the number of leaves are positively correlated with PC2(with an eigenvalue PC1 of 6.92 and PC2 of 0.49).展开更多
High nitrate leaching has been observed from the O horizons of some tropical forests;however,the drivers of high nitrate production(active nitrification)in these O horizons have not yet been identified.This study inve...High nitrate leaching has been observed from the O horizons of some tropical forests;however,the drivers of high nitrate production(active nitrification)in these O horizons have not yet been identified.This study investigated the drivers of active nitrification in the O horizon of tropical forest soils by focusing on two of the most widely recognized controlling factors of nitrification,total N,and pH.We collected mineral and O horizons from eight tropical forests in Cameroon,Indonesia,and Malaysia and measured gross nitrification rates.Some O horizons showed significantly higher gross nitrification rates than mineral horizons,indicating that these O horizons have a high potential for nitrification.Gross nitrification rates in the O horizons were positively correlated with both total N and pH,and the chemical properties(e.g.,total content of N,P,and base cations)were intercorrelated.These correlations suggested that the underlying driver of nitrification in the O horizon was nutrient richness in the litter.Results also indicated a threshold of gross nitrification rates around pH values of 5.5–6.0.We elucidate that active nitrification and subsequent high nitrate leaching from the O horizon could be driven by nutrient-rich litter,possibly derived from soil fertility and tree species.展开更多
文摘This study was carried out to assess the relationship of the status of nodulation(i.e., the number of nodules, their shape and size) in root and biomass production of plant growth parameters(i.e., number of leaves, root and shoot lengths, root biomass and shoot biomass) in Albizia saman and Leucaena leucocephala. The assessment started 60 days after seeding. The study revealed that nodulation response and biomass production in both species showed significant differences over time(p < 0.05) in all variables except in the root-shoot ratio(oven-dry) of L. leucocephala. The study also showed significant differences(p < 0.05) in nodule formation and biomass production at the end of the study period between the two species except in the number of nodules and leaves and the green root-shoot ratio. There were strong positive correlations between nodule formation and biomass production, i.e., the number of nodules and the age of plants, the number of nodules and leaves, as well as the number of nodules and biomass(root biomass and shoot biomass) in both species. The results obtained using principal component analysis(PCA) and correlation coefficients of the different characteristics of nodulation and biomass production were similar in both species. The PCA showed that shoot biomass(shoot green weight and shoot oven-dry weight) is positively correlated with PC1(with an eigenvalue of 7.50) and root length is positively correlated with PC2(with an eigenvalue of 0.19) in the case of A. saman. In the case of L. leucocephala, the PCA revealed that root biomass(root green weight and root oven-dry weight), shoot biomass and shoot length are also positively correlated with PC1, while nodule formation and the number of leaves are positively correlated with PC2(with an eigenvalue PC1 of 6.92 and PC2 of 0.49).
基金This study was supported by Center for Ecological Research,Kyoto University,a Joint Usage/Research Center,and financially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(Grant numbers 24228007,17H06171,and 19J14572).The authors have no relevant financial or non-financial interests to disclose.
文摘High nitrate leaching has been observed from the O horizons of some tropical forests;however,the drivers of high nitrate production(active nitrification)in these O horizons have not yet been identified.This study investigated the drivers of active nitrification in the O horizon of tropical forest soils by focusing on two of the most widely recognized controlling factors of nitrification,total N,and pH.We collected mineral and O horizons from eight tropical forests in Cameroon,Indonesia,and Malaysia and measured gross nitrification rates.Some O horizons showed significantly higher gross nitrification rates than mineral horizons,indicating that these O horizons have a high potential for nitrification.Gross nitrification rates in the O horizons were positively correlated with both total N and pH,and the chemical properties(e.g.,total content of N,P,and base cations)were intercorrelated.These correlations suggested that the underlying driver of nitrification in the O horizon was nutrient richness in the litter.Results also indicated a threshold of gross nitrification rates around pH values of 5.5–6.0.We elucidate that active nitrification and subsequent high nitrate leaching from the O horizon could be driven by nutrient-rich litter,possibly derived from soil fertility and tree species.