In this note, we show that the number of composite integers n ≤ x such that φ(n)|n - 1 is at most O(x^1/2(loglog x)^1/2), thus improving earlier results by Pomerance and by Shan.
文摘In this note, we show that the number of composite integers n ≤ x such that φ(n)|n - 1 is at most O(x^1/2(loglog x)^1/2), thus improving earlier results by Pomerance and by Shan.