The convergence and stability analysis for two end-to-end rate-based congestion control algorithms with unavoidable random loss in packets are presented, which can be caused by, for example, errors on wireless links. ...The convergence and stability analysis for two end-to-end rate-based congestion control algorithms with unavoidable random loss in packets are presented, which can be caused by, for example, errors on wireless links. The convergence rates of these two algorithms are analyzed by linearizing them around their equilibrium points, since they are globally stable and can converge to their unique equilibrium points. Some sufficient conditions for local stability in the presence of round-trip delay are obtained based on the general Nyquist criterion of stability. The stability conditions can be considered to be more general. If random loss in the first congestion control algorithm is not considered, they reduce to the local stability conditions which have been obtained in some literatures. Furthermore, sufficient conditions for local stability of a new congestion control algorithm have also been obtained if random loss is not considered in the second congestion control algorithm.展开更多
Due to the dynamic stiffness characteristics of human joints, it is easy to cause impact and disturbance on normal movements during exoskeleton assistance. This not only brings strict requirements for exoskeleton cont...Due to the dynamic stiffness characteristics of human joints, it is easy to cause impact and disturbance on normal movements during exoskeleton assistance. This not only brings strict requirements for exoskeleton control design, but also makes it difficult to improve assistive level. The Variable Stiffness Actuator (VSA), as a physical variable stiffness mechanism, has the characteristics of dynamic stiffness adjustment and high stiffness control bandwidth, which is in line with the stiffness matching experiment. However, there are still few works exploring the assistive human stiffness matching experiment based on VSA. Therefore, this paper designs a hip exoskeleton based on VSA actuator and studies CPG human motion phase recognition algorithm. Firstly, this paper puts forward the requirements of variable stiffness experimental design and the output torque and variable stiffness dynamic response standards based on human lower limb motion parameters. Plate springs are used as elastic elements to establish the mechanical principle of variable stiffness, and a small variable stiffness actuator is designed based on the plate spring. Then the corresponding theoretical dynamic model is established and analyzed. Starting from the CPG phase recognition algorithm, this paper uses perturbation theory to expand the first-order CPG unit, obtains the phase convergence equation and verifies the phase convergence when using hip joint angle as the input signal with the same frequency, and then expands the second-order CPG unit under the premise of circular limit cycle and analyzes the frequency convergence criterion. Afterwards, this paper extracts the plate spring modal from Abaqus and generates the neutral file of the flexible body model to import into Adams, and conducts torque-stiffness one-way loading and reciprocating loading experiments on the variable stiffness mechanism. After that, Simulink is used to verify the validity of the criterion. Finally, based on the above criterions, the signal mean value is removed using feedback structure to complete the phase recognition algorithm for the human hip joint angle signal, and the convergence is verified using actual human walking data on flat ground.展开更多
The almost convergent function which was introduced by Raimi [6] and discussed by Ho [4], Das and Nanda [2, 3], is the continuous analogue of almost convergent sequences (see [5]). In this paper, we establish the Ta...The almost convergent function which was introduced by Raimi [6] and discussed by Ho [4], Das and Nanda [2, 3], is the continuous analogue of almost convergent sequences (see [5]). In this paper, we establish the Tauberian conditions and the Cauchy criteria for weak almost convergent functions on R2+ .展开更多
传统电控液晶分子指向矢和电参数建模采用Gauss-Seidel迭代法,选取最大误差收敛法进行计算。该方法适用范围广且计算精度高,但计算效率较低,在一些复杂模型和较高偏压的情况下难以满足建模要求。为解决上述问题,从迭代算法和收敛准则方...传统电控液晶分子指向矢和电参数建模采用Gauss-Seidel迭代法,选取最大误差收敛法进行计算。该方法适用范围广且计算精度高,但计算效率较低,在一些复杂模型和较高偏压的情况下难以满足建模要求。为解决上述问题,从迭代算法和收敛准则方面对传统方法进行改进。首先使用逐次超松弛迭代(Successive Over Relaxation,SOR)方法完成仿真;其次分别选取平均误差收敛法和均方根误差收敛法进行计算。结果表明:改进前后仿真结果精度误差很小,SOR方法计算时间为传统方法的30%~40%,平均误差收敛法与均方根误差收敛法计算时间为传统方法的70%~80%。改进后的建模方法能在保证计算精度的前提下,大幅提高计算效率,为电控液晶射频器件、雷达通信相控阵电参数快速高精度可视化建模及设计提供依据。展开更多
The proximal alternating linearized minimization(PALM)method suits well for solving blockstructured optimization problems,which are ubiquitous in real applications.In the cases where subproblems do not have closed-for...The proximal alternating linearized minimization(PALM)method suits well for solving blockstructured optimization problems,which are ubiquitous in real applications.In the cases where subproblems do not have closed-form solutions,e.g.,due to complex constraints,infeasible subsolvers are indispensable,giving rise to an infeasible inexact PALM(PALM-I).Numerous efforts have been devoted to analyzing the feasible PALM,while little attention has been paid to the PALM-I.The usage of the PALM-I thus lacks a theoretical guarantee.The essential difficulty of analysis consists in the objective value nonmonotonicity induced by the infeasibility.We study in the present work the convergence properties of the PALM-I.In particular,we construct a surrogate sequence to surmount the nonmonotonicity issue and devise an implementable inexact criterion.Based upon these,we manage to establish the stationarity of any accumulation point,and moreover,show the iterate convergence and the asymptotic convergence rates under the assumption of the Lojasiewicz property.The prominent advantages of the PALM-I on CPU time are illustrated via numerical experiments on problems arising from quantum physics and 3-dimensional anisotropic frictional contact.展开更多
基金supported in part by the National Natural Science Foundation of China (10671170,60404022)the National Outstanding Youth Foundation of China (60525303)and the Natural Science Foundation of Hebei Province (07M005,F2008000864)
文摘The convergence and stability analysis for two end-to-end rate-based congestion control algorithms with unavoidable random loss in packets are presented, which can be caused by, for example, errors on wireless links. The convergence rates of these two algorithms are analyzed by linearizing them around their equilibrium points, since they are globally stable and can converge to their unique equilibrium points. Some sufficient conditions for local stability in the presence of round-trip delay are obtained based on the general Nyquist criterion of stability. The stability conditions can be considered to be more general. If random loss in the first congestion control algorithm is not considered, they reduce to the local stability conditions which have been obtained in some literatures. Furthermore, sufficient conditions for local stability of a new congestion control algorithm have also been obtained if random loss is not considered in the second congestion control algorithm.
文摘Due to the dynamic stiffness characteristics of human joints, it is easy to cause impact and disturbance on normal movements during exoskeleton assistance. This not only brings strict requirements for exoskeleton control design, but also makes it difficult to improve assistive level. The Variable Stiffness Actuator (VSA), as a physical variable stiffness mechanism, has the characteristics of dynamic stiffness adjustment and high stiffness control bandwidth, which is in line with the stiffness matching experiment. However, there are still few works exploring the assistive human stiffness matching experiment based on VSA. Therefore, this paper designs a hip exoskeleton based on VSA actuator and studies CPG human motion phase recognition algorithm. Firstly, this paper puts forward the requirements of variable stiffness experimental design and the output torque and variable stiffness dynamic response standards based on human lower limb motion parameters. Plate springs are used as elastic elements to establish the mechanical principle of variable stiffness, and a small variable stiffness actuator is designed based on the plate spring. Then the corresponding theoretical dynamic model is established and analyzed. Starting from the CPG phase recognition algorithm, this paper uses perturbation theory to expand the first-order CPG unit, obtains the phase convergence equation and verifies the phase convergence when using hip joint angle as the input signal with the same frequency, and then expands the second-order CPG unit under the premise of circular limit cycle and analyzes the frequency convergence criterion. Afterwards, this paper extracts the plate spring modal from Abaqus and generates the neutral file of the flexible body model to import into Adams, and conducts torque-stiffness one-way loading and reciprocating loading experiments on the variable stiffness mechanism. After that, Simulink is used to verify the validity of the criterion. Finally, based on the above criterions, the signal mean value is removed using feedback structure to complete the phase recognition algorithm for the human hip joint angle signal, and the convergence is verified using actual human walking data on flat ground.
文摘The almost convergent function which was introduced by Raimi [6] and discussed by Ho [4], Das and Nanda [2, 3], is the continuous analogue of almost convergent sequences (see [5]). In this paper, we establish the Tauberian conditions and the Cauchy criteria for weak almost convergent functions on R2+ .
文摘传统电控液晶分子指向矢和电参数建模采用Gauss-Seidel迭代法,选取最大误差收敛法进行计算。该方法适用范围广且计算精度高,但计算效率较低,在一些复杂模型和较高偏压的情况下难以满足建模要求。为解决上述问题,从迭代算法和收敛准则方面对传统方法进行改进。首先使用逐次超松弛迭代(Successive Over Relaxation,SOR)方法完成仿真;其次分别选取平均误差收敛法和均方根误差收敛法进行计算。结果表明:改进前后仿真结果精度误差很小,SOR方法计算时间为传统方法的30%~40%,平均误差收敛法与均方根误差收敛法计算时间为传统方法的70%~80%。改进后的建模方法能在保证计算精度的前提下,大幅提高计算效率,为电控液晶射频器件、雷达通信相控阵电参数快速高精度可视化建模及设计提供依据。
基金supported by National Natural Science Foundation of China(Grant Nos.12125108,11971466,11991021,11991020,12021001 and 12288201)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.ZDBS-LY-7022)CAS(the Chinese Academy of Sciences)AMSS(Academy of Mathematics and Systems Science)-PolyU(The Hong Kong Polytechnic University)Joint Laboratory of Applied Mathematics.
文摘The proximal alternating linearized minimization(PALM)method suits well for solving blockstructured optimization problems,which are ubiquitous in real applications.In the cases where subproblems do not have closed-form solutions,e.g.,due to complex constraints,infeasible subsolvers are indispensable,giving rise to an infeasible inexact PALM(PALM-I).Numerous efforts have been devoted to analyzing the feasible PALM,while little attention has been paid to the PALM-I.The usage of the PALM-I thus lacks a theoretical guarantee.The essential difficulty of analysis consists in the objective value nonmonotonicity induced by the infeasibility.We study in the present work the convergence properties of the PALM-I.In particular,we construct a surrogate sequence to surmount the nonmonotonicity issue and devise an implementable inexact criterion.Based upon these,we manage to establish the stationarity of any accumulation point,and moreover,show the iterate convergence and the asymptotic convergence rates under the assumption of the Lojasiewicz property.The prominent advantages of the PALM-I on CPU time are illustrated via numerical experiments on problems arising from quantum physics and 3-dimensional anisotropic frictional contact.