文章以黑龙江省13个地区1967~2016年(50年)旬降水量为例,构建基于蝗虫优化算法改进精细复合多尺度熵模型(The improved refined composite multi-scale entropy based on grasshopper optimization algorithm,GOARCMSE),在此基础上采用...文章以黑龙江省13个地区1967~2016年(50年)旬降水量为例,构建基于蝗虫优化算法改进精细复合多尺度熵模型(The improved refined composite multi-scale entropy based on grasshopper optimization algorithm,GOARCMSE),在此基础上采用信息贡献率方法对不同尺度熵值作加权,全面、准确、可靠地评估区域降水复杂性。此外,基于黑龙江省旬降水复杂性测度结果,探索影响黑龙江省降水复杂性潜在因素。结果表明,黑龙江省旬降水复杂性呈现西部低东部高的显著空间分布特征。此外,水域面积和城建面积与降水复杂性测度结果相关系数分别为-0.629和0.451,存在显著相关关系。为分析模型性能,引入蝗虫优化算法改进多尺度熵模型(The multiscale entropy based on grasshopper optimization algorithm,GOA-MSE),可知GOA-RCMSE区分度和Spearman等级相关系数分别为1.1141和0.995,而GOA-MSE区分度和Spearman等级相关系数分别为1.0935和0.973,表明GOARCMSE具备更高的可靠性和稳定性。综上,GOA-RCMSE可全面合理评价区域降水复杂性,同时为不同区域解决降水复杂性测度问题提供新思路。展开更多
文摘文章以黑龙江省13个地区1967~2016年(50年)旬降水量为例,构建基于蝗虫优化算法改进精细复合多尺度熵模型(The improved refined composite multi-scale entropy based on grasshopper optimization algorithm,GOARCMSE),在此基础上采用信息贡献率方法对不同尺度熵值作加权,全面、准确、可靠地评估区域降水复杂性。此外,基于黑龙江省旬降水复杂性测度结果,探索影响黑龙江省降水复杂性潜在因素。结果表明,黑龙江省旬降水复杂性呈现西部低东部高的显著空间分布特征。此外,水域面积和城建面积与降水复杂性测度结果相关系数分别为-0.629和0.451,存在显著相关关系。为分析模型性能,引入蝗虫优化算法改进多尺度熵模型(The multiscale entropy based on grasshopper optimization algorithm,GOA-MSE),可知GOA-RCMSE区分度和Spearman等级相关系数分别为1.1141和0.995,而GOA-MSE区分度和Spearman等级相关系数分别为1.0935和0.973,表明GOARCMSE具备更高的可靠性和稳定性。综上,GOA-RCMSE可全面合理评价区域降水复杂性,同时为不同区域解决降水复杂性测度问题提供新思路。