期刊文献+
共找到161篇文章
< 1 2 9 >
每页显示 20 50 100
基于LeNet5like的迁移学习风电机组叶片覆冰故障诊断研究
1
作者 吕游 封烁 +2 位作者 郑茜 邓丹 刘吉臻 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第3期128-143,共16页
针对海上风电场和高海拔地区风机机组的叶片覆冰故障模型精度低、建模速度慢等问题,提出一种基于LeNet5like的迁移学习风电机组叶片覆冰故障诊断方法。首先,整合监控和数据采集系统的记录数据与风机覆冰情况进行预处理,建立训练数据集;... 针对海上风电场和高海拔地区风机机组的叶片覆冰故障模型精度低、建模速度慢等问题,提出一种基于LeNet5like的迁移学习风电机组叶片覆冰故障诊断方法。首先,整合监控和数据采集系统的记录数据与风机覆冰情况进行预处理,建立训练数据集;其次,基于改进后的LeNet5like网络构建覆冰故障诊断模型,提取数据集中多变量间的相关性特征信息;然后,经网络参数微调迁移学习对模型进行训练,实现对其他风机覆冰故障诊断模型的快速建立;最后,经实验验证,该模型覆冰故障诊断准确率为98.90%,较无迁移模块网络训练时间缩短28 s,提升约15.91%,验证了基于LeNet5like的迁移学习风电机组叶片覆冰故障诊断方法的精确性和快速性。 展开更多
关键词 故障诊断 叶片覆冰 迁移学习 lenet5like网络 SCADA数据
下载PDF
基于改进LeNet-5网络的堆芯燃料组件编码识别
2
作者 吕伽奇 丁帅 +1 位作者 庞静珠 许小进 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第2期121-128,共8页
在核电站堆芯核燃料组件水下组装作业中,需要通过视觉技术进行组件编码的识别以便准确定位组件的安装位置。针对水下环境中弱光照等问题导致了图像质量的降低,本文通过乘方增强算法、OSTU算法、CLAHE算法和拉普拉斯变换的方法来实现堆... 在核电站堆芯核燃料组件水下组装作业中,需要通过视觉技术进行组件编码的识别以便准确定位组件的安装位置。针对水下环境中弱光照等问题导致了图像质量的降低,本文通过乘方增强算法、OSTU算法、CLAHE算法和拉普拉斯变换的方法来实现堆芯燃料组件编码字符水下图像的增强。为了提高编码识别效果,提出了一种整合LeNet-5网络和支持向量机(SVM)的模型,在网络中添加BN(Batch Normalization)层与Dropout层来加速网络的运行速度,并改进Sigmoid函数,增加函数的平滑性,以此来减少梯度消失。实验表明,在自定义数据集上的验证准确率为99.82%,识别率为100%,相比于其他模型有显著的提升。 展开更多
关键词 编码识别 图像处理 CLAHE算法 lenet-5 支持向量机(SVM)
下载PDF
基于权重分摊的LeNet-5卷积神经网络防御策略
3
作者 陈顺发 刘芬 《测控技术》 2024年第6期33-39,共7页
随着神经网络在自动驾驶、医疗诊断等关键领域的应用不断深入,如何确保神经网络的鲁棒性和安全性已成为当前研究的热点和挑战。在对抗攻击、数据中毒攻击、后门攻击等众多攻击方式中,随机翻转攻击是一种对安全性影响极大的攻击,其通过... 随着神经网络在自动驾驶、医疗诊断等关键领域的应用不断深入,如何确保神经网络的鲁棒性和安全性已成为当前研究的热点和挑战。在对抗攻击、数据中毒攻击、后门攻击等众多攻击方式中,随机翻转攻击是一种对安全性影响极大的攻击,其通过改变模型内部的权重参数来攻击网络,以降低网络性能。为应对此攻击方式,研究了一种基于权重分摊的防御策略。通过计算和分析权重的梯度来确定关键神经元,并为这些神经元添加冗余结构,使错误的权重最终被稀释,以提高模型的容错能力。为了验证这一防御策略,以LeNet-5模型为实验对象进行实验。实验表明,在相同的攻击条件下,经过防御后的模型相较于原始LeNet-5模型,容错精度提升了6.5%,相较于Inception-LeNet-5模型在全连接层上容错精度提升了1.9%。 展开更多
关键词 神经网络 防御 权重分摊 lenet-5 容错
下载PDF
研究基于LeNet-5模型对广播电视发射机入射功率图的区分
4
作者 董少华 《长江信息通信》 2024年第9期86-88,共3页
为解决发射机入射故障隐患排查难题,提出采用LeNet-5模型加强入射功率图数字符号提取,在加强发射机运行监测的基础上,引入人工智能算法实现故障自动诊断和分析。通过设计发射机入射故障诊断系统,利用入射功率图样本数据优化建立系统模型... 为解决发射机入射故障隐患排查难题,提出采用LeNet-5模型加强入射功率图数字符号提取,在加强发射机运行监测的基础上,引入人工智能算法实现故障自动诊断和分析。通过设计发射机入射故障诊断系统,利用入射功率图样本数据优化建立系统模型,能够成功区分偶发性数据偏移和电压飘动,做到准确识别设备故障,为高质量开展设备检修维护工作提供有力技术支撑。 展开更多
关键词 lenet-5模型 广播电视发射机 入射功率图 人工智能 故障诊断
下载PDF
基于LeNet模型的游梁式抽油机工况诊断研究 被引量:1
5
作者 叶哲伟 易钦珏 罗良 《西南石油大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第6期164-174,共11页
游梁式抽油机是有杆泵系统中应用最广泛的部件,分析有杆泵的示功图是判断抽油机井下工况的重要手段。针对传统示功图识别方法存在依靠专家经验以及需要人工进行特征提取,导致出现相似示功图时识别准确度低的问题开展研究。通过深度学习... 游梁式抽油机是有杆泵系统中应用最广泛的部件,分析有杆泵的示功图是判断抽油机井下工况的重要手段。针对传统示功图识别方法存在依靠专家经验以及需要人工进行特征提取,导致出现相似示功图时识别准确度低的问题开展研究。通过深度学习卷积神经网络在图像识别领域的应用,提出了一种基于LeNet的卷积神经网络模型,实现了示功图的自动识别,所搭建的模型在简化模型结构的同时考虑了抽油机常见的15种井下工况,并引入了Dropout层以及局部响应归一化层防止模型过拟合的同时提高模型的泛化能力。实验结果表明,该模型不仅收敛速度快,而且对于工况进行诊断的准确度平均为94.68%,满足抽油机工况检测的诊断精度要求。该研究为抽油机井工况智能监控预警系统的构建提供了依据,对建设智慧油田以及油田的高效生产具有重要意义。 展开更多
关键词 抽油机 示功图 卷积神经网络 lenet 工况诊断
下载PDF
基于1D-LeNet-5模型的滚动轴承故障诊断方法 被引量:1
6
作者 郭俊锋 孙磊 +1 位作者 王淼生 续德锋 《兰州理工大学学报》 CAS 北大核心 2023年第5期34-41,共8页
风力发电过程中,轴承能否正常运行关系到风电机组能否正常工作.针对现有基于深度学习的轴承故障诊断模型结构复杂、参数众多和训练困难的问题,提出了基于LeNet-5模型改进的一维卷积神经网络滚动轴承故障诊断方法.首先,为了更大程度提取... 风力发电过程中,轴承能否正常运行关系到风电机组能否正常工作.针对现有基于深度学习的轴承故障诊断模型结构复杂、参数众多和训练困难的问题,提出了基于LeNet-5模型改进的一维卷积神经网络滚动轴承故障诊断方法.首先,为了更大程度提取故障信息,引入短时傅里叶变换对原始振动信号进行预处理.其次,设计一维网络模型,其感受野更大,计算速度更快;同时,引入Leaky-ReLU激活函数,其对输入信号的细节处理能力更强;并且增加批归一化层和Dropout层,提高模型泛化能力.最后,利用训练后的模型进行故障诊断实验.结果表明,该方法在10类轴承故障分类中诊断准确率能够达到99.98%,针对风电机组轴承故障诊断具有较好的工程应用前景. 展开更多
关键词 风电机组 滚动轴承 故障诊断 卷积神经网络 短时傅里叶变换 lenet-5
下载PDF
基于字符分割和LeNet-5网络的字符验证码识别 被引量:5
7
作者 张敬勋 张俊虎 +1 位作者 赵宇波 李辉 《计算机测量与控制》 2023年第7期271-277,共7页
为了解决传统验证码识别方法效率低,精度差的问题,设计了一种先分割后识别的验证码处理方案;该方案在预处理阶段用中值滤波去噪,再利用霍夫变换对图像字符进行矫正;在字符分割阶段,利用垂直投影算法确定验证码字符块个数,以及字符坐标点... 为了解决传统验证码识别方法效率低,精度差的问题,设计了一种先分割后识别的验证码处理方案;该方案在预处理阶段用中值滤波去噪,再利用霍夫变换对图像字符进行矫正;在字符分割阶段,利用垂直投影算法确定验证码字符块个数,以及字符坐标点,再用颜色填充算法对验证码进行初步分割,根据分割后的字符块数量对粘连字符进行二次分割;在识别阶段,我们对LeNet-5网络进行了改进,修改了输入层,并用全连接层替换了LeNet-5网络中的C5层,以此来对验证码字符进行识别;实验表明,对于非粘连验证码和粘连验证码,单张图片分割时间为0.14和0.15 ms,分割准确率为98.75%和97.25%,识别准确率为99.99%和97.7%;结果表明,该算法对验证码分割和识别都有着很好的效果。 展开更多
关键词 字符分割 颜色填充分割算法 粘连字符 字符识别 lenet-5网络
下载PDF
基于改进LeNet-5优化算法的轴承故障诊断研究 被引量:1
8
作者 余蓉 熊邦书 欧巧凤 《南昌航空大学学报(自然科学版)》 CAS 2023年第4期82-87,114,共7页
针对直升机自动倾斜器滚动轴承振动信号复杂而传统卷积神经网络对轴承故障信号微小特征提取困难导致的故障诊断精度不高的问题,提出基于LeNet-5网络的一种改进方法。首先,在LeNet-5网络中设计一个新的特征提取模块,形成并行的特征提取框... 针对直升机自动倾斜器滚动轴承振动信号复杂而传统卷积神经网络对轴承故障信号微小特征提取困难导致的故障诊断精度不高的问题,提出基于LeNet-5网络的一种改进方法。首先,在LeNet-5网络中设计一个新的特征提取模块,形成并行的特征提取框架,增强网络对微小特征的提取能力,缓解直升机故障诊断精度不高的问题。其次,采用Dropout层和自适应的参数算法,避免模型不稳定,加速模型的收敛。最后,利用课题组轴承数据和西储大学公开数据集开展实验,结果表明,相较于原LeNet-5网络模型,改进后的LeNet-5网络具有较高的测试精度,在课题组数据集的测试精度达99.6%,西储大学数据集的测试精度为100%,说明该模型对滚动轴承的故障诊断具有更高的准确率。 展开更多
关键词 故障诊断 深度学习 lenet-5 自适应优化算法
下载PDF
基于GoogLeNet的稻米品种识别与碎米检测 被引量:6
9
作者 陈文博 刘昌华 +1 位作者 刘春苔 孙开琼 《中国粮油学报》 CAS CSCD 北大核心 2023年第2期146-152,共7页
稻米是我国人民食用的主要粮食作物,因此稻米的品种识别与质量检测有着重要的意义。在以前,通常使用的是人工的方式用眼睛观察来识别不同品种的稻米,这种方法效率低下,而且容易受主观的影响导致识别出错,从而影响准确率。本文基于MATLA... 稻米是我国人民食用的主要粮食作物,因此稻米的品种识别与质量检测有着重要的意义。在以前,通常使用的是人工的方式用眼睛观察来识别不同品种的稻米,这种方法效率低下,而且容易受主观的影响导致识别出错,从而影响准确率。本文基于MATLAB平台设计一套稻米品种识别系统,首先使用图像处理将实际拍摄稻米图片进行目标检测和提取,再采用迁移学习的方式训练GoogLeNet深度神经网络模型对稻米图片进行识别,该模型还能检测出每一粒稻米是否为整精米,且识别准确率可达到96.46%。在相同训练参数下对比VGG19训练结果,验证精度提高1.46%,调整数据量探究其对模型性能影响,模型准确率随着数据集增大而提高,精度维持在94.17%以上。 展开更多
关键词 稻米 Googlenet 迁移学习 深度神经网络
下载PDF
基于改进LeNet5卷积神经网络的微震监测波形识别与过程解释 被引量:2
10
作者 李佳明 唐世斌 +3 位作者 翁方文 李焜耀 要华伟 何青源 《Journal of Central South University》 SCIE EI CAS CSCD 2023年第3期904-918,共15页
在微震大数据时代背景下,开发高精度、可解释、适应性强的波形自动分类算法变得越来越重要。针对现有网络波形识别和分类的不足,基于LeNet框架提出了一种适用于微震监测波形识别的改进模型。应用改进后的模型对引汉济渭工程8个月内出现... 在微震大数据时代背景下,开发高精度、可解释、适应性强的波形自动分类算法变得越来越重要。针对现有网络波形识别和分类的不足,基于LeNet框架提出了一种适用于微震监测波形识别的改进模型。应用改进后的模型对引汉济渭工程8个月内出现的13种微震监测信号进行了研究。结果表明,改进模型中最佳框架的精度为0.98,比原模型提高了0.10。所有改进模型的平均精确度、召回率和F1值分别提高了0.11、0.12和0.12。同时,改进后的模型可以对整个波形的识别过程可视化。在某些信号类别中,改进的模型主要通过关注背景信息而不是波形来分类,为微震监测工程中信号的智能分类提供了参考。 展开更多
关键词 微震监测 波形分类 改进lenet 可解释性机器学习
下载PDF
基于改进LeNet-5网络的数字电表识别
11
作者 张宁宁 赵明冬 +1 位作者 周斌 马金辉 《无线互联科技》 2023年第11期165-168,共4页
目前在水下等特殊应用场景的电表识别研究中,虽然LeNet-5网络表现良好,但仍存在泛化能力不足、鲁棒性较差等问题。为此,文章基于改进LeNet-5网络的数字电表识别方法,通过增加激活离群值去除,利用dropout算法和ReLU激活函数增强神经网络... 目前在水下等特殊应用场景的电表识别研究中,虽然LeNet-5网络表现良好,但仍存在泛化能力不足、鲁棒性较差等问题。为此,文章基于改进LeNet-5网络的数字电表识别方法,通过增加激活离群值去除,利用dropout算法和ReLU激活函数增强神经网络泛化能力与鲁棒性。实验结果表明:改进的LeNet-5网络模型在学习速率为0.1%和迭代次数为600次时,网络精度达到99.42%。该方法具有较强的运算能力和较高的网络识别精度,可满足水下数字电表识别需求。 展开更多
关键词 数字识别 改进lenet-5网络 dropout算法 特征提取
下载PDF
基于LeNet-5卷积神经网络的物探野外手写数字识别方法与实现
12
作者 何媛媛 胡素平 +2 位作者 李春芬 孙燕国 何虎 《物探装备》 2023年第1期52-55,共4页
物探队野外采集作业时,往往需要野外操作手拍摄作业过程,其中包括当前作业位置的桩号信息,以此来协助室内质检人员对采集的视频数据进行质检工作。传统质检工作常常是由质检人员观看野外作业视频,通过查看视频中所展示的桩号信息是否正... 物探队野外采集作业时,往往需要野外操作手拍摄作业过程,其中包括当前作业位置的桩号信息,以此来协助室内质检人员对采集的视频数据进行质检工作。传统质检工作常常是由质检人员观看野外作业视频,通过查看视频中所展示的桩号信息是否正确,从而完成该项质检内容,上述质检流程浪费了大量的人力、物力,质检效率较低。本文详细介绍了LeNet-5卷积神经网络模型,并在此基础上利用Matlab软件,实现了对LeNet-5模型的训练和测试。通过训练效果图和测试结果可以看出,LeNet-5卷积神经网络模型可以快速、准确的识别物探工区手写数字,具有较好的准确性、时效性和可重复性。 展开更多
关键词 卷积神经网络 数字识别 lenet-5 MATLAB软件
下载PDF
基于改进LeNet-5网络的污泥沉降比检测研究
13
作者 王告 《软件导刊》 2023年第1期224-228,共5页
在工业废水处理过程中,污泥沉降比检测对于污水处理效果起至关重要的作用,而传统的污泥沉降比检测以人工为主,工作量大且不可控,会对结果会造成不可预计的误差。提出一种基于改进的LeNet-5神经网络的污泥沉降比检测方法,训练之前先对目... 在工业废水处理过程中,污泥沉降比检测对于污水处理效果起至关重要的作用,而传统的污泥沉降比检测以人工为主,工作量大且不可控,会对结果会造成不可预计的误差。提出一种基于改进的LeNet-5神经网络的污泥沉降比检测方法,训练之前先对目标进行颜色阈值判定,并在训练过程中提出一种轻量化特征重用网络模和正则分类器模式消除训练过程中Label-dropout的边缘效应,最后根据输出结果借助客户端/服务器(C/S结构)模式搭建整个系统。实验结果表明,改进后的神经网络对测试集的准确率高达96%以上,远高于传统神经网络和人工方法,而且改进后的神经网络更适用于小样本数据集的分类识别,极大提高了准确率和效率。 展开更多
关键词 污泥沉降 lenet-5 污水处理 C/S结构 Label-dropout 正则分类器
下载PDF
基于卷积神经网络LeNet-5的车牌字符识别研究 被引量:151
14
作者 赵志宏 杨绍普 马增强 《系统仿真学报》 CAS CSCD 北大核心 2010年第3期638-641,共4页
将卷积神经网络LeNet-5引入到车牌字符识别中。为了适应目前中国车牌字符识别的需要,对传统的卷积神经网络LeNet-5的结构进行了改进,主要是改变输出单元的个数与增加卷积层C5特征图的个数。研究结果表明,改进后的LeNet-5比传统的LeNet-... 将卷积神经网络LeNet-5引入到车牌字符识别中。为了适应目前中国车牌字符识别的需要,对传统的卷积神经网络LeNet-5的结构进行了改进,主要是改变输出单元的个数与增加卷积层C5特征图的个数。研究结果表明,改进后的LeNet-5比传统的LeNet-5的识别率有所提高,识别率达到98.68%。另外,与BP神经网络进行了比较研究,从实验中可以看出在字符识别的正确率和识别速度上都优于BP神经网络。卷积神经网络在车牌识别中具有很好地应用前景。 展开更多
关键词 字符识别 车牌识别 卷积神经网络 lenet-5
下载PDF
基于改进LeNet-5网络的交通标志识别方法 被引量:12
15
作者 汪贵平 盛广峰 +2 位作者 黄鹤 王会峰 王萍 《科学技术与工程》 北大核心 2018年第34期78-84,共7页
针对传统LeNet-5卷积神经网络用于交通标志等多种类识别任务中,存在识别正确率低、网络容易过拟合以及梯度消失等问题进行改进。引入Inception卷积模块组来提取目标丰富的特征,同时增加网络的深度。引入BN (batch normalization)层对输... 针对传统LeNet-5卷积神经网络用于交通标志等多种类识别任务中,存在识别正确率低、网络容易过拟合以及梯度消失等问题进行改进。引入Inception卷积模块组来提取目标丰富的特征,同时增加网络的深度。引入BN (batch normalization)层对输入批量样本进行规范化处理;同时改用性能更好的Relu激活函数,并使用全局池化层代替全连接层,合理改变卷积核的大小和数目。研究结果表明,改进LeNet-5网络能够有效解决过拟合和梯度消失等问题,具有较好的鲁棒性;网络识别率达到98. 5%以上,相比CNN (convolutional neural network)+SVM (support vector machine)提高了约5%,比传统的LeNet-5网络提高了3%。可见,改进后的LeNet-5网络图像识别的准确率得到显著提高。 展开更多
关键词 交通标志 lenet-5网络 卷积神经网络 准确率
下载PDF
自然场景下基于改进LeNet卷积神经网络的苹果图像识别技术 被引量:9
16
作者 程鸿芳 张春友 《食品与机械》 北大核心 2019年第3期155-158,共4页
针对传统基于内容的识别方法在特征提取方面存在计算复杂、特征不可迁移等问题,为避免光照条件、重叠及其他遮挡等因素对图像识别的影响,以LeNet卷积神经网络作为基础,对其结构进行改进,设计了一种基于改进LeNet卷积神经网络的苹果目标... 针对传统基于内容的识别方法在特征提取方面存在计算复杂、特征不可迁移等问题,为避免光照条件、重叠及其他遮挡等因素对图像识别的影响,以LeNet卷积神经网络作为基础,对其结构进行改进,设计了一种基于改进LeNet卷积神经网络的苹果目标识别模型,并利用该模型对不同场景的苹果图像进行识别训练与验证。结果表明:该网络模型可有效实现苹果图像的识别,对独立果实、遮挡果实、重叠果实以及相邻果实的识别率分别为96.25%,91.37%,94.91%,89.56%,综合识别率达到93.79%。与其他方法相比,该算法具有较强的抗干扰能力,图像识别速度快、识别率更高。 展开更多
关键词 图像识别 目标识别 卷积神经网络 lenet
下载PDF
基于小数据集的改进LeNet图像分类模型研究 被引量:4
17
作者 舒军 杨露 +2 位作者 陈义红 杨莉 邓芳 《中南民族大学学报(自然科学版)》 CAS 2019年第4期605-612,共8页
将传统卷积神经网络应用于小数据集上,LeNet模型准确率低并且收敛速度慢,VggNet等模型存在过拟合问题.针对小数据集提出一种改进LeNet模型,该模型在LeNet基础上使用ReLU函数替换sigmoid来提高收敛速度,加入1*1卷积增加模型深度并利用其... 将传统卷积神经网络应用于小数据集上,LeNet模型准确率低并且收敛速度慢,VggNet等模型存在过拟合问题.针对小数据集提出一种改进LeNet模型,该模型在LeNet基础上使用ReLU函数替换sigmoid来提高收敛速度,加入1*1卷积增加模型深度并利用其改变维度的特点来提高识别准确率,通过分解卷积和提出改进Dropout方法减少过拟合.结果表明:改进LeNet模型分类自制小龙虾数据集,比LeNet收敛速度快6000步并且准确率提高约15%,比VggNet和ResNet过拟合程度明显减少;将改进LeNet模型推广应用于开源数据集MNIST和Fashion-MNIST上,改进模型也有良好的表现. 展开更多
关键词 小数据集 卷积神经网络 改进lenet
下载PDF
基于LeNet-5模型的太阳能电池板缺陷识别分类 被引量:12
18
作者 吴涛 赖菲 《热力发电》 CAS 北大核心 2019年第3期120-125,共6页
太阳能电池板是光伏发电组件的核心部件,其质量的优劣直接关系安全发电和发电效率。因此,对太阳能电池板进行缺陷检测具有重要的实际价值。考虑到人工检测的低效性和高成本,本文提出利用在深度学习领域图像分类性能良好的卷积神经网络... 太阳能电池板是光伏发电组件的核心部件,其质量的优劣直接关系安全发电和发电效率。因此,对太阳能电池板进行缺陷检测具有重要的实际价值。考虑到人工检测的低效性和高成本,本文提出利用在深度学习领域图像分类性能良好的卷积神经网络对太阳能电池板图像进行自动识别分类。利用Tensorflow平台Tensorboard的可视化性能,对经典卷积神经网络Le Net-5模型进行结构改善和超参数的调整,并将改进LeNet-5模型与经典LeNet-5模型和支持向量机的分类结果互相对比,结果表明改进LeNet-5模型的分类效果最优。 展开更多
关键词 太阳能电池板 lenet-5模型 图像分类 卷积神经网络 超参数 Tensorboard
下载PDF
基于卷积神经网络LeNet-5的货运列车车号识别研究 被引量:10
19
作者 王晓锋 马钟 《现代电子技术》 北大核心 2016年第13期63-66,71,共5页
针对货运列车车号字符识别,提出了基于卷积神经网络Le Net-5的改进识别方法,考虑到卷积神经网络的层次化以及局部领域等结构特点,对网络中各层特征图的数量及大小等参数进行相应的改进,形成了适用于货运车号识别的新网络模型。实验结果... 针对货运列车车号字符识别,提出了基于卷积神经网络Le Net-5的改进识别方法,考虑到卷积神经网络的层次化以及局部领域等结构特点,对网络中各层特征图的数量及大小等参数进行相应的改进,形成了适用于货运车号识别的新网络模型。实验结果表明,该方法对车号的断裂、污损等问题的解决有较强的鲁棒性,达到了较高的识别率,为整个车号识别系统的精确性提供了保障。 展开更多
关键词 列车车号 车号识别 卷积神经网络 lenet-5
下载PDF
基于改进LeNet-5网络的车牌字符识别 被引量:12
20
作者 张秀玲 魏其珺 +2 位作者 周凯旋 董逍鹏 马锴 《沈阳大学学报(自然科学版)》 CAS 2020年第4期312-317,共6页
引入了Inception-SE卷积模块组来提升LeNet-5网络的广度与深度,运用SE模块增强了有用的特征并抑制了对当前任务用处不大的特征;使用BN层和Dropout优化网络,防止梯度弥散,提升精度;使用全局池化层(global average pooling,GAP)代替全连... 引入了Inception-SE卷积模块组来提升LeNet-5网络的广度与深度,运用SE模块增强了有用的特征并抑制了对当前任务用处不大的特征;使用BN层和Dropout优化网络,防止梯度弥散,提升精度;使用全局池化层(global average pooling,GAP)代替全连接层来减少网络计算参数.研究结果表明:改进后网络的识别精度达到了99.88%,比传统的LeNet-5网络提高了1.71%. 展开更多
关键词 卷积神经网络 车牌字符识别 lenet-5网络 Inception-SE卷积模块 识别精度
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部