This study introduces a novel convolutional neural network,the WISE Galaxy Classification Network(WGC),for classifying spiral and elliptical galaxies using Wide-field Infrared Survey Explorer(WISE)images.WGC attains a...This study introduces a novel convolutional neural network,the WISE Galaxy Classification Network(WGC),for classifying spiral and elliptical galaxies using Wide-field Infrared Survey Explorer(WISE)images.WGC attains an accuracy of 89.03%,surpassing the combined use of K-means or SVM with the Color-Color method in more accurately identifying galaxy morphologies.The enhanced variant,WGC_mag,integrates magnitude parameters with image features,further boosting the accuracy to 89.89%.The research also delves into the criteria for galaxy classification,discovering that WGC primarily categorizes dust-rich images as elliptical galaxies,corresponding to their lower star formation rates,and classifies less dusty images as spiral galaxies.The paper explores the consistency and complementarity of WISE infrared images with SDSS optical images in galaxy morphology classification.The SDSS Galaxy Classification Network(SGC),trained on SDSS images,achieved an accuracy of 94.64%.The accuracy reached 99.30% when predictions from SGC and WGC were consistent.Leveraging the complementarity of features in WISE and SDSS images,a novel variant of a classifier,namely the Multi-band Galaxy Morphology Integrated Classifier,has been developed.This classifier elevates the overall prediction accuracy to 95.39%.Lastly,the versatility of WGC was validated in other data sets.On the HyperLEDA data set,the distinction between elliptical galaxies and Sc,Scd and Sd spiral galaxies was most pronounced,achieving an accuracy of 90%,surpassing the classification results of the Galaxy Zoo 2 labeled WISE data set.This research not only demonstrates the effectiveness of WISE images in galaxy morphology classification but also represents an attempt to integrate multi-band astronomical data to enhance understanding of galaxy structures and evolution.展开更多
An autostereoscopic display composed of a directional backlight, an image display panel, a striped half-wave plate,and a polarized lenticular lens array is proposed. The directional backlight emitting the parallel lig...An autostereoscopic display composed of a directional backlight, an image display panel, a striped half-wave plate,and a polarized lenticular lens array is proposed. The directional backlight emitting the parallel light can redirect the cones of light to lenticular lens array and reduce the chromatic spatial-interference effect. The striped half-wave plate, located in front of the image display panel, transformed the polarization direction of the lights from the directional backlight into two mutually perpendicular directions. The polarized lenticular lens array not only can divide the light from the left and right view images to send to left and right eyes but also can reduce the crosstalk of the stereoscopic images. The proposed autostereoscopic display can produce high quality stereoscopic images without crosstalk at the optimal viewing distance.展开更多
Objective To establish a 3D atlas of the lenticular nuclei and its subnucleus with the cryosection images of the male from "Atlas of Chinese Visible Human". Methods The lenticular nuclei and its subnucleus w...Objective To establish a 3D atlas of the lenticular nuclei and its subnucleus with the cryosection images of the male from "Atlas of Chinese Visible Human". Methods The lenticular nuclei and its subnucleus were segmented from the cryosection images and reconstructed with the software展开更多
In this paper we explore the formation of bars and present the bulge and bar properties and their correlations for a sample of lenticular barred(SB0)and lenticular unbarred(S0)galaxies in the central region of the Com...In this paper we explore the formation of bars and present the bulge and bar properties and their correlations for a sample of lenticular barred(SB0)and lenticular unbarred(S0)galaxies in the central region of the Coma Cluster using HST/ACS data.In our sample,we identified bar features using the luminosity profile decomposition software GALFIT.We classified the bulges based on Sérsic index and Kormendy relation.We found that the average mass of the bulge in SB0 galaxies is 1.48×10^(10)M☉whereas the average mass of the bulge in S0 galaxies is 4.3×10^(10)M☉.We observe that SB0 galaxies show lower bulge concentration,low mass and also smaller B/T values compared to S0 galaxies.Using the Kormendy relation,we found that among the lenticular barred galaxies,82%have classical bulges and 18%have pseudo bulges.These classical bulges have low masses compared to the classical bulges of unbarred galaxies.S0,galaxies with massive classical bulges do not host bars.We also found that for all SB0s the bulge effective radius is less than the bar effective radius.SB0 galaxies with classical bulges suggest that the bar may have formed by mergers.展开更多
基金supported by the Joint Research Fund in AstronomyNational Natural Science Foundation of China(NSFC,grant No.U1931134)+1 种基金the Natural Science Foundation of Hebei,A2020202001the Natural Science Foundation of Tianjin Municipality,22JCYBJC00410。
文摘This study introduces a novel convolutional neural network,the WISE Galaxy Classification Network(WGC),for classifying spiral and elliptical galaxies using Wide-field Infrared Survey Explorer(WISE)images.WGC attains an accuracy of 89.03%,surpassing the combined use of K-means or SVM with the Color-Color method in more accurately identifying galaxy morphologies.The enhanced variant,WGC_mag,integrates magnitude parameters with image features,further boosting the accuracy to 89.89%.The research also delves into the criteria for galaxy classification,discovering that WGC primarily categorizes dust-rich images as elliptical galaxies,corresponding to their lower star formation rates,and classifies less dusty images as spiral galaxies.The paper explores the consistency and complementarity of WISE infrared images with SDSS optical images in galaxy morphology classification.The SDSS Galaxy Classification Network(SGC),trained on SDSS images,achieved an accuracy of 94.64%.The accuracy reached 99.30% when predictions from SGC and WGC were consistent.Leveraging the complementarity of features in WISE and SDSS images,a novel variant of a classifier,namely the Multi-band Galaxy Morphology Integrated Classifier,has been developed.This classifier elevates the overall prediction accuracy to 95.39%.Lastly,the versatility of WGC was validated in other data sets.On the HyperLEDA data set,the distinction between elliptical galaxies and Sc,Scd and Sd spiral galaxies was most pronounced,achieving an accuracy of 90%,surpassing the classification results of the Galaxy Zoo 2 labeled WISE data set.This research not only demonstrates the effectiveness of WISE images in galaxy morphology classification but also represents an attempt to integrate multi-band astronomical data to enhance understanding of galaxy structures and evolution.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2012AA03A301)the National Natural Science Foundation of China(Grant No.60932007)+1 种基金the Postdoctoral Science Programs Foundation of the Ministry of Education of China(Grant No.0110032110029)the Key Projects in the Tianjin Science & Technology Pillar Program,China(Grant No.11ZCKFGX02000)
文摘An autostereoscopic display composed of a directional backlight, an image display panel, a striped half-wave plate,and a polarized lenticular lens array is proposed. The directional backlight emitting the parallel light can redirect the cones of light to lenticular lens array and reduce the chromatic spatial-interference effect. The striped half-wave plate, located in front of the image display panel, transformed the polarization direction of the lights from the directional backlight into two mutually perpendicular directions. The polarized lenticular lens array not only can divide the light from the left and right view images to send to left and right eyes but also can reduce the crosstalk of the stereoscopic images. The proposed autostereoscopic display can produce high quality stereoscopic images without crosstalk at the optimal viewing distance.
文摘Objective To establish a 3D atlas of the lenticular nuclei and its subnucleus with the cryosection images of the male from "Atlas of Chinese Visible Human". Methods The lenticular nuclei and its subnucleus were segmented from the cryosection images and reconstructed with the software
文摘In this paper we explore the formation of bars and present the bulge and bar properties and their correlations for a sample of lenticular barred(SB0)and lenticular unbarred(S0)galaxies in the central region of the Coma Cluster using HST/ACS data.In our sample,we identified bar features using the luminosity profile decomposition software GALFIT.We classified the bulges based on Sérsic index and Kormendy relation.We found that the average mass of the bulge in SB0 galaxies is 1.48×10^(10)M☉whereas the average mass of the bulge in S0 galaxies is 4.3×10^(10)M☉.We observe that SB0 galaxies show lower bulge concentration,low mass and also smaller B/T values compared to S0 galaxies.Using the Kormendy relation,we found that among the lenticular barred galaxies,82%have classical bulges and 18%have pseudo bulges.These classical bulges have low masses compared to the classical bulges of unbarred galaxies.S0,galaxies with massive classical bulges do not host bars.We also found that for all SB0s the bulge effective radius is less than the bar effective radius.SB0 galaxies with classical bulges suggest that the bar may have formed by mergers.