This article discusses regression analysis of failure time under the additive hazards model, when the regression coefficients are time-varying. The regression coefficients are estimated locally based on the pseudo-sco...This article discusses regression analysis of failure time under the additive hazards model, when the regression coefficients are time-varying. The regression coefficients are estimated locally based on the pseudo-score function [12] in a window around each time point. The proposed method can be easily implemented, and the resulting estimators are shown to be consistent and asymptotically normal with easily estimated variances. The simulation studies show that our estimation procedure is reliable and useful.展开更多
The consideration of the time-varying covariate and time-varying coefficient effect in survival models are plausible and robust techniques. Such kind of analysis can be carried out with a general class of semiparametr...The consideration of the time-varying covariate and time-varying coefficient effect in survival models are plausible and robust techniques. Such kind of analysis can be carried out with a general class of semiparametric transformation models. The aim of this article is to develop modified estimating equations under semiparametric transformation models of survival time with time-varying coefficient effect and time-varying continuous covariates. For this, it is important to organize the data in a counting process style and transform the time with standard transformation classes which shall be applied in this article. In the situation when the effect of coefficient and covariates change over time, the widely used maximum likelihood estimation method becomes more complex and burdensome in estimating consistent estimates. To overcome this problem, alternatively, the modified estimating equations were applied to estimate the unknown parameters and unspecified monotone transformation functions. The estimating equations were modified to incorporate the time-varying effect in both coefficient and covariates. The performance of the proposed methods is tested through a simulation study. To sum up the study, the effect of possibly time-varying covariates and time-varying coefficients was evaluated in some special cases of semiparametric transformation models. Finally, the results have shown that the role of the time-varying covariate in the semiparametric transformation models was plausible and credible.展开更多
To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive...To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models (AFMM) and offtine Auto-Regression with eXogenous variables (ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identified from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identified by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete (RC) frame structure in a shaking table test.展开更多
There are two models in use today to analyze structural responses when subjected to earthquake ground motions, the Displacement Input Model (DIM) and the Acceleration Input Model (AIM). The time steps used in dire...There are two models in use today to analyze structural responses when subjected to earthquake ground motions, the Displacement Input Model (DIM) and the Acceleration Input Model (AIM). The time steps used in direct integration methods for these models are analyzed to examine the suitability of DIM. Numerical results are presented and show that the time-step for DIM is about the same as for AIM, and achieves the same accuracy. This is contrary to previous research that reported that there are several sources of numerical errors associated with the direct application of earthquake displacement loading, and a very small time step is required to define the displacement record and to integrate the dynamic equilibrium equation. It is shown in this paper that DIM is as accurate and suitable as, if not more than, AIM for analyzing the response of a structure to uniformly distributed and spatially varying ground motions.展开更多
In this paper, the parameters of a p-dimensional linear structural EV(error-in-variable)model are estimated when the coefficients vary with a real variable and the model error is time series.The adjust weighted least ...In this paper, the parameters of a p-dimensional linear structural EV(error-in-variable)model are estimated when the coefficients vary with a real variable and the model error is time series.The adjust weighted least squares(AWLS) method is used to estimate the parameters. It is shown that the estimators are weakly consistent and asymptotically normal, and the optimal convergence rate is also obtained. Simulations study are undertaken to illustrate our AWLSEs have good performance.展开更多
In this paper, we propose a new test for testing the stability in macroeconomic time series, based on the LASSO variable selection approach and nonparametric estimation of a time-varying model. The wild bootstrap is e...In this paper, we propose a new test for testing the stability in macroeconomic time series, based on the LASSO variable selection approach and nonparametric estimation of a time-varying model. The wild bootstrap is employed to obtain its data-dependent critical values. We apply the new method to test the stability of bivariate relations among 92 major Chinese macroeconomic time series. We find that more than 70% bivariate relations are significantly unstable.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (QN0914)
文摘This article discusses regression analysis of failure time under the additive hazards model, when the regression coefficients are time-varying. The regression coefficients are estimated locally based on the pseudo-score function [12] in a window around each time point. The proposed method can be easily implemented, and the resulting estimators are shown to be consistent and asymptotically normal with easily estimated variances. The simulation studies show that our estimation procedure is reliable and useful.
文摘The consideration of the time-varying covariate and time-varying coefficient effect in survival models are plausible and robust techniques. Such kind of analysis can be carried out with a general class of semiparametric transformation models. The aim of this article is to develop modified estimating equations under semiparametric transformation models of survival time with time-varying coefficient effect and time-varying continuous covariates. For this, it is important to organize the data in a counting process style and transform the time with standard transformation classes which shall be applied in this article. In the situation when the effect of coefficient and covariates change over time, the widely used maximum likelihood estimation method becomes more complex and burdensome in estimating consistent estimates. To overcome this problem, alternatively, the modified estimating equations were applied to estimate the unknown parameters and unspecified monotone transformation functions. The estimating equations were modified to incorporate the time-varying effect in both coefficient and covariates. The performance of the proposed methods is tested through a simulation study. To sum up the study, the effect of possibly time-varying covariates and time-varying coefficients was evaluated in some special cases of semiparametric transformation models. Finally, the results have shown that the role of the time-varying covariate in the semiparametric transformation models was plausible and credible.
基金Basic Science&Research Foundation of IEM,CEA under Grant No.2013B07International Science&Technology Cooperation Program of China under Grant No.2012DFA70810Natural Science Foundation of China under Grant No.50908216
文摘To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models (AFMM) and offtine Auto-Regression with eXogenous variables (ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identified from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identified by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete (RC) frame structure in a shaking table test.
文摘There are two models in use today to analyze structural responses when subjected to earthquake ground motions, the Displacement Input Model (DIM) and the Acceleration Input Model (AIM). The time steps used in direct integration methods for these models are analyzed to examine the suitability of DIM. Numerical results are presented and show that the time-step for DIM is about the same as for AIM, and achieves the same accuracy. This is contrary to previous research that reported that there are several sources of numerical errors associated with the direct application of earthquake displacement loading, and a very small time step is required to define the displacement record and to integrate the dynamic equilibrium equation. It is shown in this paper that DIM is as accurate and suitable as, if not more than, AIM for analyzing the response of a structure to uniformly distributed and spatially varying ground motions.
基金Supported by the Educational Commission of Hubei Province of China(Grant No.D20112503)National Natural Science Foundation of China(Grant Nos.11071022,11231010 and 11028103)the foundation of Beijing Center of Mathematics and Information Sciences
文摘In this paper, the parameters of a p-dimensional linear structural EV(error-in-variable)model are estimated when the coefficients vary with a real variable and the model error is time series.The adjust weighted least squares(AWLS) method is used to estimate the parameters. It is shown that the estimators are weakly consistent and asymptotically normal, and the optimal convergence rate is also obtained. Simulations study are undertaken to illustrate our AWLSEs have good performance.
基金Supported by the National Natural Science Foundation of China (70971113, 71131008, 71271179)the Fundamental Research Funds for the Central Universities (2010221092, 2011221015)
文摘In this paper, we propose a new test for testing the stability in macroeconomic time series, based on the LASSO variable selection approach and nonparametric estimation of a time-varying model. The wild bootstrap is employed to obtain its data-dependent critical values. We apply the new method to test the stability of bivariate relations among 92 major Chinese macroeconomic time series. We find that more than 70% bivariate relations are significantly unstable.