应用Leray-Schauder延拓定理,得到了二阶常微分方程多点边值问题x″(t)=f(t,x(t),x′(t))+e(t),t∈(0,1)αx(0)-βx′(0)=sum from i=1 to m-2 aix(ξi),γx(1)+δx′(1)=sum from j=1 to n-2 bjx(τj)解的存在性,其中f:[0,1]×R2→...应用Leray-Schauder延拓定理,得到了二阶常微分方程多点边值问题x″(t)=f(t,x(t),x′(t))+e(t),t∈(0,1)αx(0)-βx′(0)=sum from i=1 to m-2 aix(ξi),γx(1)+δx′(1)=sum from j=1 to n-2 bjx(τj)解的存在性,其中f:[0,1]×R2→R满足Caratheodory条件,e(.)∈L1(0,1),ai,bj∈R,ξi,τj∈(0,1),i=1,2,…,m-2,j=1,2,…,n-2,0<ξ1<ξ2<…<ξm-2<1,0<τ1<τ2<…<τn-2<1.展开更多
基金Supported by Ministry of Education of Science and Technology of Important Projects(207047)Natural Science Foundation of Anhui Province of China(050460103)Key Natural Science Foundation by the Bureau of Education of Anhui Province in China(2005kj031ZD)
基金Supported by the National Natural Science Foundation of China (11071001)Anhui Provincial Natural Science Foundation (1208085MA13)+1 种基金the 211 Project of Anhui University (KJTD002B)the Key Project of Anhui Provincial Education Department (KJZ2009A2005Z)
文摘应用Leray-Schauder延拓定理,得到了二阶常微分方程多点边值问题x″(t)=f(t,x(t),x′(t))+e(t),t∈(0,1)αx(0)-βx′(0)=sum from i=1 to m-2 aix(ξi),γx(1)+δx′(1)=sum from j=1 to n-2 bjx(τj)解的存在性,其中f:[0,1]×R2→R满足Caratheodory条件,e(.)∈L1(0,1),ai,bj∈R,ξi,τj∈(0,1),i=1,2,…,m-2,j=1,2,…,n-2,0<ξ1<ξ2<…<ξm-2<1,0<τ1<τ2<…<τn-2<1.
基金Research supported by the National Natural Science Foundation of China(10671167)Natural Science Foundation of the Educational Depart ment of Jiangsu Province(05KGD110225)Foundation of Indigo Blue Project of the Educational Depart mentof Jiangsu Province(QL200502)