The possibility of gravitational shielding from more massive objects than the Moon-planet Earth and the giant planets of the Solar System is considered. Within the framework of the Lesage concept, the mutual spatial s...The possibility of gravitational shielding from more massive objects than the Moon-planet Earth and the giant planets of the Solar System is considered. Within the framework of the Lesage concept, the mutual spatial shielding of mass-forming elements-atomic nuclei in ordinary matter-was evaluated. It is concluded that the size of the Moon is insufficient for tangible gravitational shielding and partial mutual shielding is about 50% for planet Earth. It is determined that there is a critical thickness of ordinary matter at which complete mutual shielding of atomic nuclei is observed. The estimated critical thickness is about d<sub>c</sub>=1.3 X 10<sup>8</sup>m, which is typical for the sizes of giant planets. It is concluded that due to the presence of gravitational shielding, not the entire mass of massive celestial bodies participates in the act of gravitational interaction, which leads to the conclusion that there is a hidden mass of massive objects and to low values in the calculation of the density of the giant planets of the Solar System. It has been established that the true mass and true density of giant planets exceed their known values by 5 times. The presence of gravitational shielding from the planet Earth leads to a revision of the physical picture of nature and the consequences of tidal forces. The idea of P. Dirac concerning the accounting of the sizes of microparticles-nucleons, expressed for the further development of the physical theory, is realized. The gravitational size of the atomic nucleus is calculated on the order of 10<sup>-</sup><sup>18</sup> m.展开更多
文摘The possibility of gravitational shielding from more massive objects than the Moon-planet Earth and the giant planets of the Solar System is considered. Within the framework of the Lesage concept, the mutual spatial shielding of mass-forming elements-atomic nuclei in ordinary matter-was evaluated. It is concluded that the size of the Moon is insufficient for tangible gravitational shielding and partial mutual shielding is about 50% for planet Earth. It is determined that there is a critical thickness of ordinary matter at which complete mutual shielding of atomic nuclei is observed. The estimated critical thickness is about d<sub>c</sub>=1.3 X 10<sup>8</sup>m, which is typical for the sizes of giant planets. It is concluded that due to the presence of gravitational shielding, not the entire mass of massive celestial bodies participates in the act of gravitational interaction, which leads to the conclusion that there is a hidden mass of massive objects and to low values in the calculation of the density of the giant planets of the Solar System. It has been established that the true mass and true density of giant planets exceed their known values by 5 times. The presence of gravitational shielding from the planet Earth leads to a revision of the physical picture of nature and the consequences of tidal forces. The idea of P. Dirac concerning the accounting of the sizes of microparticles-nucleons, expressed for the further development of the physical theory, is realized. The gravitational size of the atomic nucleus is calculated on the order of 10<sup>-</sup><sup>18</sup> m.