The Citrus industry has need for effective approaches to remove fruit with canker before they are shipped to selective international market such as the European Union.This research aims to determine the detectable siz...The Citrus industry has need for effective approaches to remove fruit with canker before they are shipped to selective international market such as the European Union.This research aims to determine the detectable size limit for cankerous lesions using hyperspectral imaging approaches.Previously developed multispectral algorithms using visible to near-infrared wavelengths,were used to segregate cankerous citrus fruits from other peel conditions(normal,greasy spot,insect damage,melanose,scab and wind scar).However,this previous work did not consider lesion size.A two-band ratio method with a simple threshold based classifier(ratio of reflectance at wavelengths 834 nm and 729 nm),which gave maximum overall classification accuracy of 95.7%,was selected for lesion size estimation in this study.The smallest size of cankerous lesion detected in terms of equivalent diameter was 1.66 mm.The effect of variation of threshold values and number of erosion cycles(applying morphological erosion multiple times to the image)on estimation of smallest detectable lesion was observed.It was found that small threshold values gave better canker classification accuracies,while exhibiting a lower overall classification accuracy.Meanwhile,higher threshold values portrayed the opposite tendency.The threshold value of 1.275 gave the optimum tradeoff between canker classification accuracy,overall classification accuracy and minimal lesion size detection.Increasing the number of erosion cycles reduced detection rates of smaller canker lesions,leading to the conclusion that a single erosion cycle gave the best size estimation results.The erosion kernel of the size 3 mm×3 mm was used during the exploration.展开更多
Precise assessment of spinal cord cystic lesions is crucial to formulate effective therapeutic strategies,yet histological assessment of the lesion remains the primary method despite numerous studies showing inconsist...Precise assessment of spinal cord cystic lesions is crucial to formulate effective therapeutic strategies,yet histological assessment of the lesion remains the primary method despite numerous studies showing inconsistent results regarding estimation of lesion size via histology.On the other hand,despite numerous advances in micro-computed tomography(micro-CT)imaging and analysis that have allowed precise measurements of lesion size,there is not enough published data on its application to estimate intraspinal lesion size in laboratory animal models.This work attempts to show that micro-CT can be valuable for spinal cord injury research by demonstrating accurate estimation of syrinx size and compares between micro-CT and traditional histological analysis.We used a post-traumatic syringomyelia rat model to compare micro-CT analysis to conventional histological analysis.The study showed that micro-CT can detect lesions within the spinal cord very similar to histology.Importantly,micro-CT appears to provide more accurate estimates of the lesions with more measures(e.g.,surface area),can detect compounds within the cord,and can be done with the tissue of interest(spinal cord)intact.In summary,the experimental work presented here provides one of the first investigations of the use of micro-CT for estimating the size of intraparenchymal cysts and detecting materials within the spinal cord.All animal procedures were approved by the University of Akron Institutional Animal Care and Use Committee(IACUC)(protocol#LRE 16-05-09 approved on May 14,2016).展开更多
Lesions and temporary inactivation of the hippocampus (HPC) in rodents occasionally lead to discrepant amnesic effects. We directly compared and contrasted the retrograde amnesic effects that small HPC lesions (~50% d...Lesions and temporary inactivation of the hippocampus (HPC) in rodents occasionally lead to discrepant amnesic effects. We directly compared and contrasted the retrograde amnesic effects that small HPC lesions (~50% damage), large HPC lesions (~80% damage), and combined dorsal and ventral HPC inactivation using the sodium channel blocker tetrodotoxin (TTX) had on contextual fear conditioning. Compared to control rats, large HPC lesions significantly reduced freezing during retention testing, a behaviour consistent with retrograde amnesia. In contrast, neither the small lesions nor the TTX inactivation significantly reduced freezing. The extent of damage was significantly and negatively correlated with retention performance (r<sub>(9)</sub> = -0.896, p < 0.001), suggesting that 70% or more of the HPC needed to be damaged to observe deficits. Importantly, TTX inactivation disrupted spatial memory in the Morris Water Task, confirming that our inactivation procedure did impair one form of HPC-dependent memory. To assess the extent of the TTX inactivation, immediate early gene expression was quantified in the HPC following the Morris Water Task. However, despite the behavioural impairment, we did not find a significant reduction in expression. We conclude that temporary inactivation of the HPC may fail to impair context fear memory because this technique does not sufficiently disrupt the HPC.展开更多
基金Supported by The Special Coordination Fund(SCF)for Pro-moting Science and Technology commissioned by the Ministry of Education,Culture,Sports,Science and Technology(MEXT)of Japan
文摘AIM: To verify the performance of a lesion size measurement system through a clinical study.
文摘The Citrus industry has need for effective approaches to remove fruit with canker before they are shipped to selective international market such as the European Union.This research aims to determine the detectable size limit for cankerous lesions using hyperspectral imaging approaches.Previously developed multispectral algorithms using visible to near-infrared wavelengths,were used to segregate cankerous citrus fruits from other peel conditions(normal,greasy spot,insect damage,melanose,scab and wind scar).However,this previous work did not consider lesion size.A two-band ratio method with a simple threshold based classifier(ratio of reflectance at wavelengths 834 nm and 729 nm),which gave maximum overall classification accuracy of 95.7%,was selected for lesion size estimation in this study.The smallest size of cankerous lesion detected in terms of equivalent diameter was 1.66 mm.The effect of variation of threshold values and number of erosion cycles(applying morphological erosion multiple times to the image)on estimation of smallest detectable lesion was observed.It was found that small threshold values gave better canker classification accuracies,while exhibiting a lower overall classification accuracy.Meanwhile,higher threshold values portrayed the opposite tendency.The threshold value of 1.275 gave the optimum tradeoff between canker classification accuracy,overall classification accuracy and minimal lesion size detection.Increasing the number of erosion cycles reduced detection rates of smaller canker lesions,leading to the conclusion that a single erosion cycle gave the best size estimation results.The erosion kernel of the size 3 mm×3 mm was used during the exploration.
基金This study was financially supported by Conquer Chiari.
文摘Precise assessment of spinal cord cystic lesions is crucial to formulate effective therapeutic strategies,yet histological assessment of the lesion remains the primary method despite numerous studies showing inconsistent results regarding estimation of lesion size via histology.On the other hand,despite numerous advances in micro-computed tomography(micro-CT)imaging and analysis that have allowed precise measurements of lesion size,there is not enough published data on its application to estimate intraspinal lesion size in laboratory animal models.This work attempts to show that micro-CT can be valuable for spinal cord injury research by demonstrating accurate estimation of syrinx size and compares between micro-CT and traditional histological analysis.We used a post-traumatic syringomyelia rat model to compare micro-CT analysis to conventional histological analysis.The study showed that micro-CT can detect lesions within the spinal cord very similar to histology.Importantly,micro-CT appears to provide more accurate estimates of the lesions with more measures(e.g.,surface area),can detect compounds within the cord,and can be done with the tissue of interest(spinal cord)intact.In summary,the experimental work presented here provides one of the first investigations of the use of micro-CT for estimating the size of intraparenchymal cysts and detecting materials within the spinal cord.All animal procedures were approved by the University of Akron Institutional Animal Care and Use Committee(IACUC)(protocol#LRE 16-05-09 approved on May 14,2016).
文摘Lesions and temporary inactivation of the hippocampus (HPC) in rodents occasionally lead to discrepant amnesic effects. We directly compared and contrasted the retrograde amnesic effects that small HPC lesions (~50% damage), large HPC lesions (~80% damage), and combined dorsal and ventral HPC inactivation using the sodium channel blocker tetrodotoxin (TTX) had on contextual fear conditioning. Compared to control rats, large HPC lesions significantly reduced freezing during retention testing, a behaviour consistent with retrograde amnesia. In contrast, neither the small lesions nor the TTX inactivation significantly reduced freezing. The extent of damage was significantly and negatively correlated with retention performance (r<sub>(9)</sub> = -0.896, p < 0.001), suggesting that 70% or more of the HPC needed to be damaged to observe deficits. Importantly, TTX inactivation disrupted spatial memory in the Morris Water Task, confirming that our inactivation procedure did impair one form of HPC-dependent memory. To assess the extent of the TTX inactivation, immediate early gene expression was quantified in the HPC following the Morris Water Task. However, despite the behavioural impairment, we did not find a significant reduction in expression. We conclude that temporary inactivation of the HPC may fail to impair context fear memory because this technique does not sufficiently disrupt the HPC.