In this paper, we prove the existence of forced waves for Leslie-Gower prey-predator model with nonlocal effects under shifting environment. By constructing a pair of upper and lower solutions with the method of monot...In this paper, we prove the existence of forced waves for Leslie-Gower prey-predator model with nonlocal effects under shifting environment. By constructing a pair of upper and lower solutions with the method of monotone iteration, we can obtain the existence of forced waves for any positive constant shifting speed. Finally, we show the asymptotical behavior of traveling wave fronts in two tails.展开更多
In this article,we investigate a fractional-order singular Leslie-Gower prey-predator bioeconomic model,which describes the interaction bet ween populations of prey and predator,and takes into account the economic int...In this article,we investigate a fractional-order singular Leslie-Gower prey-predator bioeconomic model,which describes the interaction bet ween populations of prey and predator,and takes into account the economic interest.We firstly obtain the solvability condition and the st ability of the model sys tem,and discuss the singularity induced bifurcation phenomenon.Next,we introduce a st ate feedback controller to elimina te the singularity induced bifurcation phenomenon,and discuss the optimal control problems.Finally,numerical solutions and their simulations are considered in order to illustrate the theoretical results and reveal the more complex dynamical behavior.展开更多
In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term....In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term. Firstly, for ODE model, the local stability of equilibrium point is given. And by using bifurcation theory and selecting suitable bifurcation parameters, we find many kinds of bifurcation phenomena, including Transcritical bifurcation and Hopf bifurcation. For the reaction-diffusion model, we find that Turing instability occurs. Besides, it is proved that Hopf bifurcation exists in the model. Finally, numerical simulations are presented to verify and illustrate the theoretical results.展开更多
Using finite differences and entropy inequalities, the global existence of weak solutions to a multidimensional parabolic strongly coupled prey-predator model is obtained. The nonnegativity of the solutions is also sh...Using finite differences and entropy inequalities, the global existence of weak solutions to a multidimensional parabolic strongly coupled prey-predator model is obtained. The nonnegativity of the solutions is also shown.展开更多
In this paper, the problem of chaos, stability and estimation of unknown parameters of the stochastic lattice gas for prey-predator model with pair-approximation is studied. The result shows that this dynamical system...In this paper, the problem of chaos, stability and estimation of unknown parameters of the stochastic lattice gas for prey-predator model with pair-approximation is studied. The result shows that this dynamical system exhibits an oscillatory behavior of the population densities of prey and predator. Using Liapunov stability technique, the estimators of the unknown probabilities are derived, and also the updating rules for stability around its steady states are derived. Furthermore the feedback control law has been as non-linear functions of the population densities. Numerical simulation study is presented graphically.展开更多
In this manuscript, we have studied a fractional-order tri-trophic model with the help of Caputo operator. The total population is divided into three parts, namely prey, intermediate predator and top predator. In addi...In this manuscript, we have studied a fractional-order tri-trophic model with the help of Caputo operator. The total population is divided into three parts, namely prey, intermediate predator and top predator. In addition, the predator fear impact on prey population is suggested in this paper. Existence and uniqueness along with non-negativity and boundedness of the model system have been investigated. We have studied the local stability at all equilibrium points. Also, we have discussed global stability and Hopf bifurcation of our suggested model at interior equilibrium point. The Adam-Bashforth-Moulton approach is utilized to approximate the solution to the proposed model. With the help of MATLAB, we were able to conduct graphical demonstrations and numerical simulations.展开更多
In this paper,the Caputo fractional derivative is assumed to be the prey-predator model.In order to create Caputo fractional differential equations for the prey-predator model,a discretization process is first used.Th...In this paper,the Caputo fractional derivative is assumed to be the prey-predator model.In order to create Caputo fractional differential equations for the prey-predator model,a discretization process is first used.The fixed points of the model are categorized topologically.We identify requirements for the fixed points of the suggested prey-predator model's local asymptotic stability.We demonstrate analytically that,under specific parametric conditions,a fractional order prey-predator model supports both a Neimark-Sacker(NS)bifurcation and a Flip bifurcation.We present evidence for NS and Flip bifurcations using central manifold and bifurcation theory.The parameter values and the initial conditions have been found to have a profound impact on the dynamical behavior of the fractional order prey-predator model.As the bifurcation parameter is increased,the system displays chaotic behavior.Numerical simulations are shown to demonstrate chaotic behaviors like bifurcations,phase portraits,invariant closed cycles,and attractive chaotic sets in addition to validating analytical conclusions.The suggested prey-predator dynamical system's chaotic behavior will be controlled by the OGY and hybrid control methodology,which will also visualize the chaotic state for various biological parameters.展开更多
A three-stage-structured prey-predator model with discrete and continuous time delays is studied. The characteristic equations and the stability of the boundary and positive equilibrium are analyzed. The conditions fo...A three-stage-structured prey-predator model with discrete and continuous time delays is studied. The characteristic equations and the stability of the boundary and positive equilibrium are analyzed. The conditions for the positive equilibrium occurring Hopf bifurcation are given, by applying the theorem of Hopf bifurcation. Finally, numerical simulation and brief conclusion are given.展开更多
In this paper we characterize the phase portraits of the Leslie-Gower model for competition among species.We give the complete description of their phase portraits in the Poincarédisc(i.e.,in the compactification...In this paper we characterize the phase portraits of the Leslie-Gower model for competition among species.We give the complete description of their phase portraits in the Poincarédisc(i.e.,in the compactification of R^(2) adding the circle S1 of the infinity)modulo topological equivalence.It is well-known that the equilibrium point of the Leslie-Gower model in the interior of the positive quadrant is a global attractor in this open quadrant,and in this paper we characterize where the orbits attracted by this equilibrium born.展开更多
This paper presents and compares four mathematical models with unique spatial effects for a prey-predator system, with Tetranychus urticae as prey and Phytoseiulus persimilis as predator. Tetranychus urticae, also kno...This paper presents and compares four mathematical models with unique spatial effects for a prey-predator system, with Tetranychus urticae as prey and Phytoseiulus persimilis as predator. Tetranychus urticae, also known as two-spotted spider mite, is a harmful plant-feeding pest that causes damage to over 300 species of plants. Its predator, Phytoseiulus persimilis, a mite in the Family Phytoseiidae, effectively controls spider mite populations. In this study, we compared four mathematical models using a numerical simulation. These models include two known models: self-diffusion, and cross-diffusion, and two new models: chemotaxis effect model, and integro diffusion model, all with a Beddington-De Angelis functional response. The modeling results were validated by fitting experimental data. Results demonstrate that interaction scheme plays an important role in the prey-predator system and that the cross-diffusion model fits the real system best. The main contribution of this paper is in the two new models developed, as well as the validation of all the models using experimental data.展开更多
In this paper, we study the positive steady states of a prey-predator model with diffusion throughout and a non-monotone conversion rate under the homogeneous Dirichlet boundary condition. We obtain some results of th...In this paper, we study the positive steady states of a prey-predator model with diffusion throughout and a non-monotone conversion rate under the homogeneous Dirichlet boundary condition. We obtain some results of the existence and non-existence of positive steady states. The stability and uniqueness of positive steady states are also discussed.展开更多
We consider a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response.The main concern is the existence of positive solutions under the combined effect of cross-diffusion and Ho...We consider a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response.The main concern is the existence of positive solutions under the combined effect of cross-diffusion and Holling type-II functional response.Here,a positive solution corresponds to a coexistence state of the model.Firstly,we study the sufficient conditions to ensure the existence of positive solutions by using degree theory and analyze the coexistence region in parameter plane.In addition,we present the uniqueness of positive solutions in one dimension case.Secondly,we study the stability of the trivial and semi-trivial solutions by analyzing the principal eigenvalue of the corresponding linearized system,and then we characterize the stable/unstable regions of semi-trivial solutions in parameter plane.展开更多
The authors study a diffusive prey-predator model subject to the homogeneous Neumann boundary condition and give some qualitative descriptions of solutions to this reaction-diffusion system and its corresponding stead...The authors study a diffusive prey-predator model subject to the homogeneous Neumann boundary condition and give some qualitative descriptions of solutions to this reaction-diffusion system and its corresponding steady-state problem. The local and global stability of the positive constant steady-state are discussed, and then some results for non- existence of positive non-constant steady-states are derived.展开更多
In this paper, we investigate a prey-predator model with diffusion and ratio-dependent functional response subject to the homogeneous Neumann boundary condition. Our main focuses are on the global behavior of the reac...In this paper, we investigate a prey-predator model with diffusion and ratio-dependent functional response subject to the homogeneous Neumann boundary condition. Our main focuses are on the global behavior of the reaction-diffusion system and its corresponding steady-state problem. We first apply various Lyapunov functions to discuss the global stability of the unique positive constant steady-state. Then, for the steady-state system, we establish some a priori upper and lower estimates for positive steady-states, and derive several results for non-existence of positive non-constant steady-states if the diffusion rates are large or small.展开更多
This paper discuss the cusp bifurcation of codimension 2 (i.e. Bogdanov-Takens bifurcation) in a Leslie^Gower predator-prey model with prey harvesting, which was not revealed by Zhu and Lan [Phase portraits, Hopf bi...This paper discuss the cusp bifurcation of codimension 2 (i.e. Bogdanov-Takens bifurcation) in a Leslie^Gower predator-prey model with prey harvesting, which was not revealed by Zhu and Lan [Phase portraits, Hopf bifurcation and limit cycles of Leslie-Gower predator-prey systems with harvesting rates, Discrete and Continuous Dynamical Systems Series B. 14(1) (2010), 289-306]. It is shown that there are different parameter values for which the model has a limit cycle or a homoclinic loop.展开更多
The stabilization problem of a kind of prey-predator model with Holling fimctional response is investigated. By approximate linearization approach, a feedback control law stabilizing the closed- loop system is obtaine...The stabilization problem of a kind of prey-predator model with Holling fimctional response is investigated. By approximate linearization approach, a feedback control law stabilizing the closed- loop system is obtained. On the other hand, by exact linearization approach, a suitable change of coordinates in the state space and a feedback control law render the complex nonlinear system to be a linear controllable one such that the positive equilibrium point of the closed-loop system is globally asymptotically stable.展开更多
In this paper, we consider a modified Leslie-Clower predator prey model with Holling- type II schemes and mutual interference. By applying the comparison theorem of the differential equation and constructing a suitabl...In this paper, we consider a modified Leslie-Clower predator prey model with Holling- type II schemes and mutual interference. By applying the comparison theorem of the differential equation and constructing a suitable Lyapunov function, sufficient conditions which guarantee the permanence and existence of a unique globally attractive positive almost periodic solution of the system are obtained. Our results not only supplement but also improve some existing ones.展开更多
In this paper, we consider a stage-structured predator-prey model with modified Leslie- Gower and Holling-type II schemes. Using an iterative technique, we investigate the global stability of the positive equilibrium ...In this paper, we consider a stage-structured predator-prey model with modified Leslie- Gower and Holling-type II schemes. Using an iterative technique, we investigate the global stability of the positive equilibrium of the system. Finally, some examples are presented to verify our main result.展开更多
In this paper, a nonlinear predator reproduction and prey competition model with diffusion is discussed. Some existence and non-existence results concerning non-constant positive steady-states are presented using topo...In this paper, a nonlinear predator reproduction and prey competition model with diffusion is discussed. Some existence and non-existence results concerning non-constant positive steady-states are presented using topological degree argument and the energy method, respectively.展开更多
文摘In this paper, we prove the existence of forced waves for Leslie-Gower prey-predator model with nonlocal effects under shifting environment. By constructing a pair of upper and lower solutions with the method of monotone iteration, we can obtain the existence of forced waves for any positive constant shifting speed. Finally, we show the asymptotical behavior of traveling wave fronts in two tails.
文摘In this article,we investigate a fractional-order singular Leslie-Gower prey-predator bioeconomic model,which describes the interaction bet ween populations of prey and predator,and takes into account the economic interest.We firstly obtain the solvability condition and the st ability of the model sys tem,and discuss the singularity induced bifurcation phenomenon.Next,we introduce a st ate feedback controller to elimina te the singularity induced bifurcation phenomenon,and discuss the optimal control problems.Finally,numerical solutions and their simulations are considered in order to illustrate the theoretical results and reveal the more complex dynamical behavior.
文摘In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term. Firstly, for ODE model, the local stability of equilibrium point is given. And by using bifurcation theory and selecting suitable bifurcation parameters, we find many kinds of bifurcation phenomena, including Transcritical bifurcation and Hopf bifurcation. For the reaction-diffusion model, we find that Turing instability occurs. Besides, it is proved that Hopf bifurcation exists in the model. Finally, numerical simulations are presented to verify and illustrate the theoretical results.
基金supported by the National Natural Science Foundation of China (Nos. 10701024, 10601011)
文摘Using finite differences and entropy inequalities, the global existence of weak solutions to a multidimensional parabolic strongly coupled prey-predator model is obtained. The nonnegativity of the solutions is also shown.
文摘In this paper, the problem of chaos, stability and estimation of unknown parameters of the stochastic lattice gas for prey-predator model with pair-approximation is studied. The result shows that this dynamical system exhibits an oscillatory behavior of the population densities of prey and predator. Using Liapunov stability technique, the estimators of the unknown probabilities are derived, and also the updating rules for stability around its steady states are derived. Furthermore the feedback control law has been as non-linear functions of the population densities. Numerical simulation study is presented graphically.
文摘In this manuscript, we have studied a fractional-order tri-trophic model with the help of Caputo operator. The total population is divided into three parts, namely prey, intermediate predator and top predator. In addition, the predator fear impact on prey population is suggested in this paper. Existence and uniqueness along with non-negativity and boundedness of the model system have been investigated. We have studied the local stability at all equilibrium points. Also, we have discussed global stability and Hopf bifurcation of our suggested model at interior equilibrium point. The Adam-Bashforth-Moulton approach is utilized to approximate the solution to the proposed model. With the help of MATLAB, we were able to conduct graphical demonstrations and numerical simulations.
文摘In this paper,the Caputo fractional derivative is assumed to be the prey-predator model.In order to create Caputo fractional differential equations for the prey-predator model,a discretization process is first used.The fixed points of the model are categorized topologically.We identify requirements for the fixed points of the suggested prey-predator model's local asymptotic stability.We demonstrate analytically that,under specific parametric conditions,a fractional order prey-predator model supports both a Neimark-Sacker(NS)bifurcation and a Flip bifurcation.We present evidence for NS and Flip bifurcations using central manifold and bifurcation theory.The parameter values and the initial conditions have been found to have a profound impact on the dynamical behavior of the fractional order prey-predator model.As the bifurcation parameter is increased,the system displays chaotic behavior.Numerical simulations are shown to demonstrate chaotic behaviors like bifurcations,phase portraits,invariant closed cycles,and attractive chaotic sets in addition to validating analytical conclusions.The suggested prey-predator dynamical system's chaotic behavior will be controlled by the OGY and hybrid control methodology,which will also visualize the chaotic state for various biological parameters.
文摘A three-stage-structured prey-predator model with discrete and continuous time delays is studied. The characteristic equations and the stability of the boundary and positive equilibrium are analyzed. The conditions for the positive equilibrium occurring Hopf bifurcation are given, by applying the theorem of Hopf bifurcation. Finally, numerical simulation and brief conclusion are given.
基金supported by the Agencia Estatal de Investigacion grant PID2019-104658GB-I00the H2020 European Research Council grant MSCA-RISE-2017-777911partially supported by FCT/Portugal through CAMGSD,IST-ID,projects UIDB/04459/2020 and UIDP/04459/2020.
文摘In this paper we characterize the phase portraits of the Leslie-Gower model for competition among species.We give the complete description of their phase portraits in the Poincarédisc(i.e.,in the compactification of R^(2) adding the circle S1 of the infinity)modulo topological equivalence.It is well-known that the equilibrium point of the Leslie-Gower model in the interior of the positive quadrant is a global attractor in this open quadrant,and in this paper we characterize where the orbits attracted by this equilibrium born.
文摘This paper presents and compares four mathematical models with unique spatial effects for a prey-predator system, with Tetranychus urticae as prey and Phytoseiulus persimilis as predator. Tetranychus urticae, also known as two-spotted spider mite, is a harmful plant-feeding pest that causes damage to over 300 species of plants. Its predator, Phytoseiulus persimilis, a mite in the Family Phytoseiidae, effectively controls spider mite populations. In this study, we compared four mathematical models using a numerical simulation. These models include two known models: self-diffusion, and cross-diffusion, and two new models: chemotaxis effect model, and integro diffusion model, all with a Beddington-De Angelis functional response. The modeling results were validated by fitting experimental data. Results demonstrate that interaction scheme plays an important role in the prey-predator system and that the cross-diffusion model fits the real system best. The main contribution of this paper is in the two new models developed, as well as the validation of all the models using experimental data.
基金the National Natural Science Foundation of China 10471022the Ministry of Education of China Science and Technology Major Projects Grant 104090the Foundation of Excellent Doctoral Disscrtation of Southeast University YBJJ0405
文摘In this paper, we study the positive steady states of a prey-predator model with diffusion throughout and a non-monotone conversion rate under the homogeneous Dirichlet boundary condition. We obtain some results of the existence and non-existence of positive steady states. The stability and uniqueness of positive steady states are also discussed.
基金supported by National Natural Science Foundation of China(Grant No.11201380)the Fundamental Research Funds for the Central Universities(Grant No.XDJK2012B007)+2 种基金Doctor Fund of Southwest University(Grant No.SWU111021)Educational Fund of Southwest University(Grant No.2010JY053)National Research Foundation of Korea Grant funded by the Korean Government(Ministry of Education,Science and Technology)(Grant No.NRF-2011-357-C00006)
文摘We consider a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response.The main concern is the existence of positive solutions under the combined effect of cross-diffusion and Holling type-II functional response.Here,a positive solution corresponds to a coexistence state of the model.Firstly,we study the sufficient conditions to ensure the existence of positive solutions by using degree theory and analyze the coexistence region in parameter plane.In addition,we present the uniqueness of positive solutions in one dimension case.Secondly,we study the stability of the trivial and semi-trivial solutions by analyzing the principal eigenvalue of the corresponding linearized system,and then we characterize the stable/unstable regions of semi-trivial solutions in parameter plane.
基金Project supported by the National Natural Science Foundation of China (Nos. 10801090, 10726016)
文摘The authors study a diffusive prey-predator model subject to the homogeneous Neumann boundary condition and give some qualitative descriptions of solutions to this reaction-diffusion system and its corresponding steady-state problem. The local and global stability of the positive constant steady-state are discussed, and then some results for non- existence of positive non-constant steady-states are derived.
基金the National Natural Science Foundation of China (Grant Nos. 10801090, 10726016,10771032)the Scientific Innovation Team Project of Hubei Provincial Department of Education (Grant No.T200809)
文摘In this paper, we investigate a prey-predator model with diffusion and ratio-dependent functional response subject to the homogeneous Neumann boundary condition. Our main focuses are on the global behavior of the reaction-diffusion system and its corresponding steady-state problem. We first apply various Lyapunov functions to discuss the global stability of the unique positive constant steady-state. Then, for the steady-state system, we establish some a priori upper and lower estimates for positive steady-states, and derive several results for non-existence of positive non-constant steady-states if the diffusion rates are large or small.
基金Supported by the National Natural Science Foundation of China(No.11101170)Research Project of the Central China Normal University(No.CCNU12A01007)the State Scholarship Fund of the China Scholarship Council(2011842509)
文摘This paper discuss the cusp bifurcation of codimension 2 (i.e. Bogdanov-Takens bifurcation) in a Leslie^Gower predator-prey model with prey harvesting, which was not revealed by Zhu and Lan [Phase portraits, Hopf bifurcation and limit cycles of Leslie-Gower predator-prey systems with harvesting rates, Discrete and Continuous Dynamical Systems Series B. 14(1) (2010), 289-306]. It is shown that there are different parameter values for which the model has a limit cycle or a homoclinic loop.
文摘The stabilization problem of a kind of prey-predator model with Holling fimctional response is investigated. By approximate linearization approach, a feedback control law stabilizing the closed- loop system is obtained. On the other hand, by exact linearization approach, a suitable change of coordinates in the state space and a feedback control law render the complex nonlinear system to be a linear controllable one such that the positive equilibrium point of the closed-loop system is globally asymptotically stable.
文摘In this paper, we consider a modified Leslie-Clower predator prey model with Holling- type II schemes and mutual interference. By applying the comparison theorem of the differential equation and constructing a suitable Lyapunov function, sufficient conditions which guarantee the permanence and existence of a unique globally attractive positive almost periodic solution of the system are obtained. Our results not only supplement but also improve some existing ones.
文摘In this paper, we consider a stage-structured predator-prey model with modified Leslie- Gower and Holling-type II schemes. Using an iterative technique, we investigate the global stability of the positive equilibrium of the system. Finally, some examples are presented to verify our main result.
基金supported by the National Natural Science Foundation of China(No.10771032)the Natural Science Foundation of Jiangsu province BK2006088the second author was supported by National Natural Science Foundation of China(No.10601011).
文摘In this paper, a nonlinear predator reproduction and prey competition model with diffusion is discussed. Some existence and non-existence results concerning non-constant positive steady-states are presented using topological degree argument and the energy method, respectively.