This paper investigates the equivalent model for the friction boundary condition between blank and holder during sheet metal forming simulation, and proposes an equivalent algorithm, the thickness threshold value algo...This paper investigates the equivalent model for the friction boundary condition between blank and holder during sheet metal forming simulation, and proposes an equivalent algorithm, the thickness threshold value algorithm, for the first time based on thickness weighting. This algorithm assumes that the holder clearance is uniform during sheet metal forming; and the main reason for the unevenness of friction force distribution under the holder is that the uneven deformation of the blank leads to its uneven thickness distribution, which makes the local pressure on the blank distributed unevenly. The algorithm proposed in this paper can effectively simulate the influence of the unevenness on the forming process. Validity of this algorithm is verified by a comparison between the simulation results and the experimental ones for the drawing process of a car spring base.展开更多
This paper presents the derivation of a first order friction model for lubricated sheet metal forming.Assuming purely plastic real contacts, Newton's law of viscosity, and a square root behavior of the hydrodynami...This paper presents the derivation of a first order friction model for lubricated sheet metal forming.Assuming purely plastic real contacts, Newton's law of viscosity, and a square root behavior of the hydrodynamic coefficient of friction with respect to the hydrodynamic Hersey parameter an analytic model is found. The model predicts the coefficient of friction as a function of the relative pressure, the relative Hersey parameter and the real contact coefficient of friction. Questions about local and global friction are raised in the validation of the model against flat tool sheet experiments. For some flat tool sheet experiments reasonable agreements are obtained assuming a rigid punch pressure distribution. The restricted number of user inputs makes the model useful in early tool design simulations.展开更多
A meshfree method based on reproducing kernel approximation and point collocation is presented for analysis of metal ring compression. The point collocation method is a true meshfree method without the employment of a...A meshfree method based on reproducing kernel approximation and point collocation is presented for analysis of metal ring compression. The point collocation method is a true meshfree method without the employment of a background mesh. It is shown that, in a point collocation approach, the remesh problem because of the mesh distortion in FEM (finite element method) and the low efficiency in Galerkin-based meshfree method are avoided. The corrected kernel functions are introduced to the stabilization of free-surface boundary conditions. The solution of symmetric ring compression problem is compared with a conventional finite element solution, and reasonable results have been obtained.展开更多
The accurate representation of tribological boundary conditions at the tool–workpiece interface is crucial for analysis and optimization of formability,material flow,and surface quality of components during metal for...The accurate representation of tribological boundary conditions at the tool–workpiece interface is crucial for analysis and optimization of formability,material flow,and surface quality of components during metal forming processes.It has been found that these tribological conditions vary spatially and historically with process parameters and contact conditions.These time-dependent tribological behaviours are also known as transient tribological phenomena,which are widely observed during forming processes and many other manufacturing application scenarios.However,constant friction values are usually assigned to represent complex and dynamic interfacial conditions,which would introduce deviations in the relevant predictions.In this paper,transient tribological phenomena and the contemporary understanding of the interaction between friction and wear are reviewed,and it has been found that these phenomena are induced by the transitions of friction mechanisms and highly dependent on complex loading conditions at the interface.Friction modelling techniques for transient behaviours for metal forming applications are also reviewed.To accurately describe the evolutionary friction values and corresponding wear during forming,the advanced interactive friction modelling has been established for different application scenarios,including lubricated condition,dry sliding condition(metal-on-metal contact),and coated system.展开更多
Existing methods for examining the friction parameters in metal forming all have advantages and disadvantages.Based on the theory of plasticity,the current study established quantitative correlations among friction co...Existing methods for examining the friction parameters in metal forming all have advantages and disadvantages.Based on the theory of plasticity,the current study established quantitative correlations among friction coefficient/factor,yield stress of the workpiece material,load and die geometry in the forward extrusion with a conical die,and then designed a procedure for testing the friction parameters in forming processes using the correlations.A series of extrusion experiments along with the numerical simulations,using AA 7050 specimens under various lubricating conditions,were carried out.The results proved that the method can obtain the friction coefficient/factor with an acceptable precision.Theoretically,since the effects of material properties,forming velocity,temperature and surficial condition,etc.,on the deformation can be directly considered in the operation,this method is applicable to a wide range of material types and forming conditions.To avoid the occurrence of "barreling phenomenon" under large load which may lead to failure of the operation,it is recommended that half angle of the conical die ranges from 5 to 10 degrees.展开更多
Galling phenomena in metal forming not only affect the quality of the engineered surfaces but also the success or failure of the manufacturing operation itself.This paper reviews the different galling conditions in sh...Galling phenomena in metal forming not only affect the quality of the engineered surfaces but also the success or failure of the manufacturing operation itself.This paper reviews the different galling conditions in sheet and bulk metal forming processes along with their evolution and the effects of temperature on galling.A group of anti-galling methods employed to prevent galling defects are also presented in detail.The techniques for quantitatively measuring galling are introduced,and the related prediction models,including friction,wear,and galling growth models,are presented to better understand the underlying phenomena.Galling phenomena in other processes similar to those occurring in metal forming are also examined to suggest different ways of further studying galling in metal forming.Finally,future research directions for the study of galling in metal forming are suggested.展开更多
In this study a neural network approach is proposed to realize an automatic numerical prediction of the interfacial friction factor and the flow stress of materials. Decrease in the inner diameter and reduction in the...In this study a neural network approach is proposed to realize an automatic numerical prediction of the interfacial friction factor and the flow stress of materials. Decrease in the inner diameter and reduction in the height of the ring are taken as input展开更多
Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces w...Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces were tested under similar contact conditions regarding contact area, normal pressure, sliding speed, lubricant and surface characteristics to calculate the friction coefficient between the tool surface and a high strength low alloy steel sheet HSLA 380. The results showed that friction coefficient varies over a wide range with different lubricating conditions and different sliding velocities. For some sliding velocities, the coefficient of friction is stable and low, while for others it is unstable and higher. Results of the experiments reveal that this novel tribotester is a very useful tool to evaluate and compare the friction between steel sheet and tool surfaces in alloyed steel for cold working applications. The outcomes have only small dispersion within the different test series, which indicates a stable process with good repeatability. The test method enables comparison of different surface finishes and treatments, lubricants and coatings in terms of friction and galling under conditions similar to those found in sheet metal forming processes. The four different types of surfaces considered for this study were grinded, polished, nitrided and quenched/tempered. The main difference among the tested tools in this work was the surface roughness, which was found to have a strong influence on friction.展开更多
To reduce the usage of classical lubricants in deep drawing,a new tribological system based on volatile lubricants was developed.Therefore,a volatile medium is injected under high pressure into the interstice between ...To reduce the usage of classical lubricants in deep drawing,a new tribological system based on volatile lubricants was developed.Therefore,a volatile medium is injected under high pressure into the interstice between drawing tool and sheet metal.Depending on temperature and pressure,the temporary lubricant may exist in its gaseous or liquid phase.In this study,a novel high fluid pressure tribometer was designed to investigate the friction and wear of dry steel contacts under comparable conditions like in dry deep drawing.Therefore,a new ball-on-disc tribometer was designed and integrated into a high-pressure vessel.To specifically investigate the effects of different environments(technical air,liquid and gaseous carbon dioxide,nitrogen,argon)at atmospheric and high pressure(0.1 MPa,6 MPa)on tribology,the specimens and all components were operating unlubricated.During the experiments,the friction was measured continuously.Results show that the highest friction occurs in air and the lowest in carbon dioxide environment.Subsequent to the experiments,the wear of the specimens was assessed along with changes in surface chemistry related to tribochemical reactions.Therefore,the tribology of the dry sliding contacts is correlated to changes of the surface chemistry.Also differences as well as similarities regarding the different fluid environments are shown.As the results show,the differences between the media used are most pronounced at elevated pressure.Concluding,this work gives clear indications on the suitability of volatile lubricants in dry friction or rather gas lubrication,especially for dry deep drawing.展开更多
基金Project supported by Project 985-Automotive Engineering of Jilin University.
文摘This paper investigates the equivalent model for the friction boundary condition between blank and holder during sheet metal forming simulation, and proposes an equivalent algorithm, the thickness threshold value algorithm, for the first time based on thickness weighting. This algorithm assumes that the holder clearance is uniform during sheet metal forming; and the main reason for the unevenness of friction force distribution under the holder is that the uneven deformation of the blank leads to its uneven thickness distribution, which makes the local pressure on the blank distributed unevenly. The algorithm proposed in this paper can effectively simulate the influence of the unevenness on the forming process. Validity of this algorithm is verified by a comparison between the simulation results and the experimental ones for the drawing process of a car spring base.
基金supported by the Swedish Foundation for Strategic Research(PV08-0041)
文摘This paper presents the derivation of a first order friction model for lubricated sheet metal forming.Assuming purely plastic real contacts, Newton's law of viscosity, and a square root behavior of the hydrodynamic coefficient of friction with respect to the hydrodynamic Hersey parameter an analytic model is found. The model predicts the coefficient of friction as a function of the relative pressure, the relative Hersey parameter and the real contact coefficient of friction. Questions about local and global friction are raised in the validation of the model against flat tool sheet experiments. For some flat tool sheet experiments reasonable agreements are obtained assuming a rigid punch pressure distribution. The restricted number of user inputs makes the model useful in early tool design simulations.
基金the National Natural Science Foundation of China (No. 50275059).
文摘A meshfree method based on reproducing kernel approximation and point collocation is presented for analysis of metal ring compression. The point collocation method is a true meshfree method without the employment of a background mesh. It is shown that, in a point collocation approach, the remesh problem because of the mesh distortion in FEM (finite element method) and the low efficiency in Galerkin-based meshfree method are avoided. The corrected kernel functions are introduced to the stabilization of free-surface boundary conditions. The solution of symmetric ring compression problem is compared with a conventional finite element solution, and reasonable results have been obtained.
基金supported by SmartForming Research Base,Imperial College London,UK.
文摘The accurate representation of tribological boundary conditions at the tool–workpiece interface is crucial for analysis and optimization of formability,material flow,and surface quality of components during metal forming processes.It has been found that these tribological conditions vary spatially and historically with process parameters and contact conditions.These time-dependent tribological behaviours are also known as transient tribological phenomena,which are widely observed during forming processes and many other manufacturing application scenarios.However,constant friction values are usually assigned to represent complex and dynamic interfacial conditions,which would introduce deviations in the relevant predictions.In this paper,transient tribological phenomena and the contemporary understanding of the interaction between friction and wear are reviewed,and it has been found that these phenomena are induced by the transitions of friction mechanisms and highly dependent on complex loading conditions at the interface.Friction modelling techniques for transient behaviours for metal forming applications are also reviewed.To accurately describe the evolutionary friction values and corresponding wear during forming,the advanced interactive friction modelling has been established for different application scenarios,including lubricated condition,dry sliding condition(metal-on-metal contact),and coated system.
基金the National Natural Science Foundation of China(No.51575066),the Natural Science Foundation of Chongqing(No.cstc2018jcyjAX0159)。
文摘Existing methods for examining the friction parameters in metal forming all have advantages and disadvantages.Based on the theory of plasticity,the current study established quantitative correlations among friction coefficient/factor,yield stress of the workpiece material,load and die geometry in the forward extrusion with a conical die,and then designed a procedure for testing the friction parameters in forming processes using the correlations.A series of extrusion experiments along with the numerical simulations,using AA 7050 specimens under various lubricating conditions,were carried out.The results proved that the method can obtain the friction coefficient/factor with an acceptable precision.Theoretically,since the effects of material properties,forming velocity,temperature and surficial condition,etc.,on the deformation can be directly considered in the operation,this method is applicable to a wide range of material types and forming conditions.To avoid the occurrence of "barreling phenomenon" under large load which may lead to failure of the operation,it is recommended that half angle of the conical die ranges from 5 to 10 degrees.
文摘Galling phenomena in metal forming not only affect the quality of the engineered surfaces but also the success or failure of the manufacturing operation itself.This paper reviews the different galling conditions in sheet and bulk metal forming processes along with their evolution and the effects of temperature on galling.A group of anti-galling methods employed to prevent galling defects are also presented in detail.The techniques for quantitatively measuring galling are introduced,and the related prediction models,including friction,wear,and galling growth models,are presented to better understand the underlying phenomena.Galling phenomena in other processes similar to those occurring in metal forming are also examined to suggest different ways of further studying galling in metal forming.Finally,future research directions for the study of galling in metal forming are suggested.
文摘In this study a neural network approach is proposed to realize an automatic numerical prediction of the interfacial friction factor and the flow stress of materials. Decrease in the inner diameter and reduction in the height of the ring are taken as input
文摘Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces were tested under similar contact conditions regarding contact area, normal pressure, sliding speed, lubricant and surface characteristics to calculate the friction coefficient between the tool surface and a high strength low alloy steel sheet HSLA 380. The results showed that friction coefficient varies over a wide range with different lubricating conditions and different sliding velocities. For some sliding velocities, the coefficient of friction is stable and low, while for others it is unstable and higher. Results of the experiments reveal that this novel tribotester is a very useful tool to evaluate and compare the friction between steel sheet and tool surfaces in alloyed steel for cold working applications. The outcomes have only small dispersion within the different test series, which indicates a stable process with good repeatability. The test method enables comparison of different surface finishes and treatments, lubricants and coatings in terms of friction and galling under conditions similar to those found in sheet metal forming processes. The four different types of surfaces considered for this study were grinded, polished, nitrided and quenched/tempered. The main difference among the tested tools in this work was the surface roughness, which was found to have a strong influence on friction.
文摘To reduce the usage of classical lubricants in deep drawing,a new tribological system based on volatile lubricants was developed.Therefore,a volatile medium is injected under high pressure into the interstice between drawing tool and sheet metal.Depending on temperature and pressure,the temporary lubricant may exist in its gaseous or liquid phase.In this study,a novel high fluid pressure tribometer was designed to investigate the friction and wear of dry steel contacts under comparable conditions like in dry deep drawing.Therefore,a new ball-on-disc tribometer was designed and integrated into a high-pressure vessel.To specifically investigate the effects of different environments(technical air,liquid and gaseous carbon dioxide,nitrogen,argon)at atmospheric and high pressure(0.1 MPa,6 MPa)on tribology,the specimens and all components were operating unlubricated.During the experiments,the friction was measured continuously.Results show that the highest friction occurs in air and the lowest in carbon dioxide environment.Subsequent to the experiments,the wear of the specimens was assessed along with changes in surface chemistry related to tribochemical reactions.Therefore,the tribology of the dry sliding contacts is correlated to changes of the surface chemistry.Also differences as well as similarities regarding the different fluid environments are shown.As the results show,the differences between the media used are most pronounced at elevated pressure.Concluding,this work gives clear indications on the suitability of volatile lubricants in dry friction or rather gas lubrication,especially for dry deep drawing.