Levees are essential structures in flood defense systems,and their failures can lead to devastating consequences on the surrounding territories.One of the failure mechanisms mostly controlled by the foundation soil st...Levees are essential structures in flood defense systems,and their failures can lead to devastating consequences on the surrounding territories.One of the failure mechanisms mostly controlled by the foundation soil stratigraphy is the instability of the land side slope,triggered by the development of high uplift pressures in the foundation.This complex phenomenon has been investigated experimentally with centrifuge tests or large-scale tests and numerically with the limit equilibrium method(LEM)and the finite element method(FEM).In this work,we applied a multiphase formulation of the material point method(MPM)to analyze the development of toe uplift instability mechanism,from the onset of failure to large displacements.The numerical model is inspired by an experiment carried out in a geotechnical centrifuge test by Allersma and Rohe(2003).The comparison with the experiment allows for understanding critical pore pressure triggering large displacements in the foundation soils.Moreover,we numerically evaluated the impact of different values of foundation soils’hydraulic conductivity on the failure mechanism.The results show that hydraulic conductivity mainly influences the time of failure onset and the extension of shear localization at depth.Finally,the advantages of using large displacement approaches in the safety assessment of earth structures are discussed.Unlike FEM,there are no issues with element distortions generating difficulties with numerical convergence,allowing for full postfailure reproduction.This capability permits precise quantification of earth structure damages and post-failure displacements.The ensuing reinforcement systems’design is no longer over-conservative,with a significant reduction in associated costs.展开更多
Levees are affected by over-exploitation of river sand and river adjustments after the formation of sand pits. The slope stability is seriously threatened, drawing wide concern among experts and scholars in the area o...Levees are affected by over-exploitation of river sand and river adjustments after the formation of sand pits. The slope stability is seriously threatened, drawing wide concern among experts and scholars in the area of water conservancy. This study analyzed the uncertainties of slope stability of levees under river sand mining conditions, including uncertainty caused by interest- driven over-exploitation by sand mining contractors, and uncertainty of the distance from the slope or sand pit to the bottom of the levee under the action of cross-flow force after the sand pit forms. Based on the results of uncertainty analysis, the distribution and related parameters of these uncertainties were estimated according to the Yangtze River sand mining practice. A risk model of the slope instability of a levee under river sand mining conditions was built, and the possibility of slope instability under different slope gradients in a certain reach of the Yangtze River was calculated with the Monte Carlo method and probability combination method. The results indicated that the probability of instability risk rose from 2.38% to 4.74% as the pits came into being.展开更多
The stability of the ancient flood control levees is mainly influenced by water level fluctuations, groundwater concentration and rainfalls. This paper takes the Lanxi ancient levee as a research object to study the e...The stability of the ancient flood control levees is mainly influenced by water level fluctuations, groundwater concentration and rainfalls. This paper takes the Lanxi ancient levee as a research object to study the evolution laws of its seepage, displacement and stability before and after reinforcement with the upside-down hanging wells and grouting curtain through numerical simulation methods combined with experiments and observations. The study results indicate that the filled soil is less affected by water level fluctuations and groundwater concentration after reinforcement. A high groundwater level is detrimental to the levee's long-term stability, and the drainage issues need to be fully considered. The deformation of the reinforced levee is effectively controlled since the fill deformation is mainly borne by the upside-down hanging wells. The safety factors of the levee before reinforcement vary significantly with the water level. The minimum value of the safety factors is 0.886 during the water level decreasing period, indicating a very high risk of the instability. While it reached 1.478 after reinforcement, the stability of the ancient levee is improved by a large margin.展开更多
The Dnieper River headwaters are in Russia’s Valdai Hills and the river flows south to the Black Sea. The Dnieper River provides a waterway in which to transport goods to and from various European nations. In additio...The Dnieper River headwaters are in Russia’s Valdai Hills and the river flows south to the Black Sea. The Dnieper River provides a waterway in which to transport goods to and from various European nations. In addition, the dams on the river provide hydro power. There are approximately 2260 km of Dnieper waterways in Russia, in Belarus, and within Ukraine. The Dnieper River has numerous urban centers including Smolensk in Russia, Mogilev in Belarus and Kiev and Zaporizhzhya in Ukraine. The worst nuclear accident in history unfolded, in the Dnieper River watershed, in northern Ukraine as a reactor at the Chernobyl nuclear power plant exploded and burned. After an accident, such as Chernobyl, radionuclide contaminated bodies of water via direct deposition from the air, discharge as effluent or indirectly from catchment basin washout. When radionuclides contaminate large bodies of water, they are quickly dispersing and accumulate in water bottom sediments, benthos, aquatic plants, and bottom feeding fish. The main pathways to humans are through contamination of drinking-water, from use of water for irrigation of food crops, and consumption of contaminated fish. Kakhovka Dam on the Dnieper River was destroyed during the Russian-Ukraine conflict and the dam needs to rebuild as soon as possible. Perhaps lessons learned by the US Army Corps of Engineers (USACE), after using TNT to blow up the Birds Point front line levee on the Mississippi River in May of 2011, can be applied to the man-induced 2023 Kakhovka Dam breach. The Birds Point man-induced levee breaches and subsequent flooding of farmland resulted in the loss of the 2011 crops and damaged the future soil productivity. The strong current and sweep of the water through the three man-induced levee breaches on the New Madrid floodway levee created deep gullies, displaced tons of soil, and damaged irrigation equipment, farms, and homes. The New Madrid floodway agricultural lands were restored, and the environmental damages were mitigated. The Kakhovka Dam destruction caused widespread flooding which affected settlements and farmland across the Dnieper watershed. The presence and breach-induced redistribution of Chernobyl-derived nuclides is an additional condition not present at the New Madrid man-induced levee breach. Four canal networks have become disconnected from the feeder reservoir. The canals were the source of drinking water for 700,000 people living in southern Ukraine. The Kakhovka canals also provided irrigation for vast areas of farmland. The water loss from the canals adversely affected food production in the region. The primary objectives of this paper are to assess lessons learned by the USACE and apply them in Ukraine to help restore and manage the Dnieper lifeline and watershed.展开更多
Basaltic eruptions have been observed to produce structurally complex, compound 'a'ā lava flow fields but their morphometry has only rarely been systematically documented. We document the morphology and struc...Basaltic eruptions have been observed to produce structurally complex, compound 'a'ā lava flow fields but their morphometry has only rarely been systematically documented. We document the morphology and structures that developed during the emplacement of the 1982 basaltic lava flow field at Mount Cameroon (MC) volcano over a period of one month. Topographic cross-sections (13 in total) were made from the main vent (~2700 m above sea level (a.s.l)) down to a distance of 5.5 km on the cooled lava surface. Details obtained from these cross-sections include: channel width and depth, levee slope, lava surface morphology and structures. These details enabled us to describe the physical characteristics of the 1982 lava flow field. The inclined (12° - 19°) underlying slopes on which this flow field was emplaced resulted in a characteristic channelized basaltic 'a'ā flow field morphology. This includes a proximal zone characterised by reduced flow width and depth with no subsidiary channels. Slab-crusted lava dominates the proximal channel distinctively bent into convex upward shapes. 7 secondary vents were observed for the first time ~2.5 km from the main vent, with heights of 3 - 15 m. This is a very significant observation since it points to the fact that the flow field emplacement may have been a product of 2 eruption sites as observed at other historical MC lava flow fields. This supposition was ruled out by further evidence obtained from other surface features within the flow field. The presence of these secondary vents still has an important bearing in lava flow hazard assessment. Field observations also revealed the presence of tumulus. This is a novel feature for MC lava flow fields. It displayed a close similarity to those observed at other basaltic volcanoes occurring in association with clinker 'a'ā lava, lava tubes, squeeze-ups and pressure ridges. Channels are well-defined, bounded by levees. Accretional and overflow levees dominate in this flow field. This lava flow-field attained a final length of 7.5 km, an area of 2.6 × 106 m2 and volume of 1.3 × 107 m3. The presence of tumulus indicates internal inflation together with structures such as pressure ridges and squeeze-ups which are also attributed to compressive forces. Our observations suggest that real-time monitoring of compound lava flow fields evolution at MC may reveal the emplacement mechanisms of complex structures such as the secondary vents (~2180 - 2011 m a.s.l.) observed within the flow field. In addition, documenting the occurrence, morphology and link between lava tubes, tumulus and squeeze-ups may allow us to determine the risk of reactivation of a stalled flow front. This will thereby enhance the ability to track and assess hazards posed by lava flow emplacement from MC-like volcanoes.展开更多
Vagueness is a natural character of language. Vagueness of journalistic English exists in lexical level and syntactic level as well. Lexical vagueness in journalistic English is usually resulted from the indefinite me...Vagueness is a natural character of language. Vagueness of journalistic English exists in lexical level and syntactic level as well. Lexical vagueness in journalistic English is usually resulted from the indefinite meaning of words, while in syntactic level, it may be resulted from the combined use of vague words or the employment of some sentence patterns. This thesis aims to help readers to understand journalistic English from the perspective of vague language.展开更多
In the context of global climate change,the impact of group-occurring ocean dynamic disasters on China's offshore areas is becoming more and more intense.The study of the effect of existing ocean dynamic disasters...In the context of global climate change,the impact of group-occurring ocean dynamic disasters on China's offshore areas is becoming more and more intense.The study of the effect of existing ocean dynamic disasters on offshore hazard-bearing bodies mostly focuses on the effect of single disaster-causing factors,and it is still insufficient to study storm surge and dynamic wave coupling&reinforcement effects as well as the process of the dynamic response of such hazard-bearing bodies as seawalls.This study firstly realized the synchronous process of water level and wave through continuous tide generation and wave generation by the wave maker and tide generating device,so as to realize the dynamic coupling simulation of storm surge and wave in the laboratory.Then the physical model test of the typical seawall section was carried out under the dynamic coupling of storm surge and wave as well as at a conventional fixed water level respectively.In the process of test wave overtopping discharge and the damage process of the levee crown and backwall of seawalls were observed and compared,and their damage mechanism was also studied.展开更多
The wheat canopy reflectance spectrum is affected by many internal and external factors such as diseases and growth stage. Separating the effects of disease stress on the crop from the observed mixed signals is crucia...The wheat canopy reflectance spectrum is affected by many internal and external factors such as diseases and growth stage. Separating the effects of disease stress on the crop from the observed mixed signals is crucial for increasing the precision of remote sensing monitoring of wheat stripe rust. The canopy spectrum of winter wheat infected by stripe rust was processed with the difference-in-differences(DID) algorithm used in econometrics. The monitoring accuracies of wheat stripe rust before and after processing with the DID algorithm were compared in the presence of various external factors, disease severity, and several simulated satellite sensors. The correlation between the normalized difference vegetation index processed by the DID algorithm(NDVI-DID) and the disease severity level(SL) increased in comparison with the NDVI before processing. The increase in precision in the natural disease area in the field in the presence of large differences in growth stage, growth, planting, and management of the crop was greater than that in the controlled experiment. For low disease levels(SL < 20%), the R2 of the regression of NDVI-DIDon SL was 38.8% higher than that of the NDVI and the root mean square error(RMSE) was reduced by 11.1%. The increase in precision was greater than that for the severe level(SL > 40%).According to the measured hyperspectral data, the spectral reflectance of three satellite sensor levels was simulated. The wide-band NDVI was calculated. Compared with the wide-band NDVI and vegetation indexes(VI) before DID processing, there were increases in the correlation between SL and the various types of VIS-DID, as well as in the correlation between SL and NDVI-DID. It is feasible to apply the DID algorithm to multispectral satellite data and diverse types of VISfor monitoring wheat stripe rust. Our results improve the quantification of independent effects of stripe rust infection on canopy reflectance spectrum,increase the precision of remote sensing monitoring of wheat stripe rust, and provide a reference for remote sensing monitoring of other crop diseases.展开更多
Whenever levees on the Ohio or Mississippi rivers are breached, there are soil damages in the flooded areas that impact agricultural management capacities and crop productivity. Floodwaters coat the entire flooded lan...Whenever levees on the Ohio or Mississippi rivers are breached, there are soil damages in the flooded areas that impact agricultural management capacities and crop productivity. Floodwaters coat the entire flooded land surface with sediments which include a variety of pollutants, nutrients and contaminants. The nature of the sediments in floodwaters varies with the topographical and land use characteristics of the watershed. The soil types, hydro-geologic features, volume of flow, time of year, agricultural use of fertilizers, pesticides, and other chemicals as well as upstream point sources such as sewage treatment plants, storm sewer drainage and other urban land uses will affect the extent of the contamination and fine scale remediation needed. Preliminary characterization and measurement of soils and sediment deposit at three locations that experienced recent natural and man induced levee breaches are analyzed to identify patterns of soil and crop damage. These findings provide guidance to the restoration of craters, gullies, land scoured areas and contaminated sediment depositional sites with a goal to improve decision-making, risk analysis and remedial effectiveness. Recommendations include: (1) improve characterization and measurement of eroded soils and distribution of sediment contaminants after levee breaching; (2) assess contamination effects on soil productivity and long term agricultural production in order to understand the impacts of flooding on agricultural soils; (3) evaluate reconstruction investments needed to repair levees based on return of the land to productivity and increased landscape resilience by reducing vulnerability to future flooding and levee breaching stress.展开更多
One only needs to study the soil and geologic history and location of the ancient Mississippi and Ohio Rivers to understand why Len Small levee if patched will continue to fail. Much of Dogtooth Bend located in Alexan...One only needs to study the soil and geologic history and location of the ancient Mississippi and Ohio Rivers to understand why Len Small levee if patched will continue to fail. Much of Dogtooth Bend located in Alexander County, Illinois was originally in the ancient Ohio River valley (Figure 1) alluvial sediments north and east of the confluence with the ancient Mississippi River. The ancient Ohio River valley soils underlain by alluvial sediments and have been easily eroded by the re-aligning modern Mississippi River which now travels through the bedrock controlled Thebes Gap (Figure 2) and into the Ancient Ohio river valley. The primary objectives of this paper are: 1) to explain why Len Small levee, Alexander County, Illinois, US will continue to breach during major flooding events if repaired and 2) to develop a new combined raised causeway and levee system which will provide a Mississippi River floodwater bypass, be sustainable, encourage and fund a land use change, restore the degraded highway road beds, protect remaining Dogtooth Bend farmsteads and farmland that have not yet been degraded by past flooding events and provide floodwater storage during major flooding events at the confluence of the Mississippi and Ohio Rivers.展开更多
Public and private levee systems may not be robust enough to address flooding risk to agriculture under changing climate conditions. Of concern are levee protected riverine bottomlands with intensive agricultural uses...Public and private levee systems may not be robust enough to address flooding risk to agriculture under changing climate conditions. Of concern are levee protected riverine bottomlands with intensive agricultural uses and diminished wetland systems that give resilience to floodplain hydrologic functions. In the United States natural and induced levee breaching has caused soil damage, loss of agricultural productivity, and public tension among agricultural landowners, urban residents, and environmental interests. Risk management and adaptive capacity of this humannatural system could be improved by assessments of 1) soil damage and 2) stakeholder values, fears, and knowledge about the riverine bottomland agroecosystem.展开更多
To study the influence of coal mining on the stability of river levees,a mechanical model of mining-induced river levee deformation was established.This was based on the mining-induced deformation characteristics of r...To study the influence of coal mining on the stability of river levees,a mechanical model of mining-induced river levee deformation was established.This was based on the mining-induced deformation characteristics of river levees and the application of a typical surface subsidence function.Meanwhile,a failure criterion was proposed for river levees.Using some examples,the deformation of,and stress distribution through,river levees under the influence of mining were obtained:the maximum tensile stress on the bottom of the river levee was less than the tensile strength,under which circumstance the river levee remained undamaged.Meanwhile,this research analyzed the influence of three factors including the maximum surface subsidence wmax,half-length of surface subsidence basin L,and foundation coefficient k on the stability of river levees.Results showed that reducing the mining height of the working face and the foundation co-efficient,and increasing the strike length of the working face could reduce the influence of mining on river levees.These results provided a theoretical basis for predicting the mining-induced deformation and failure of river levees.展开更多
In coordination of the construction of concealed work of levee project, the research on the soil quality of Jingnan levee in Hubei province was carried out through test. The results demonstrate: ① the Jingnan levee e...In coordination of the construction of concealed work of levee project, the research on the soil quality of Jingnan levee in Hubei province was carried out through test. The results demonstrate: ① the Jingnan levee embankment is in bad quality, the compaction degree of most levee sections doesn’t reach 92%; the average compressive coefficient of the levee backfilled soils is about 0.3 MPa; the seepage coefficients are 10\+ -5 ~10\+ -6 cm/s generally; the levee body was compacted unevenly; ② the soil layers of the levee foundation are distributed complicatedly and generally in low density; the void ratios of various soils are mostly in 0.7~1, indicating that the foundation soils are generally in loose state; ③ the pH value of levee body and foundation is 7.05~8.95, attributing to weak alkaline and not producing significant influence on liquid-plastic limit and shear strength of soils, the content of strongly soluble salt of levee foundation soils is 0.01%~0.52% and will not produce great influence on the mechanical behaviours of soils.展开更多
In this study, we hypothesized that total flavonoid of Litsea coreana leve (TFLC) protects against focal cerebral ischemia/reperfusion injury. TFLC (25, 50, 100 mg/kg) was administered orally to a rat model of foc...In this study, we hypothesized that total flavonoid of Litsea coreana leve (TFLC) protects against focal cerebral ischemia/reperfusion injury. TFLC (25, 50, 100 mg/kg) was administered orally to a rat model of focal ischemia/reperfusion injury, while the free radical scavenging agent, edaravone, was used as a positive control drug. Results of neurological deficit scoring, 2,3,5-triphenyl tetrazolium chloride staining, hematoxylin-eosin staining and biochemical tests showed that TFLC at different doses significantly alleviated cerebral ischemia-induced neurological deficits and histopathological changes, and reduced infarct volume. Moreover, it suppressed the increase in the levels of nitrates plus nitrites, malondialdehyde and lactate dehydrogenase, and it diminished the reduction in glu- tathione, superoxide dismutase and catalase activities induced by cerebral ischemia/reperfusion injury. Compared with edaravone, the protective effects of TFLC at low and medium doses (25, 50 mg/kg) against cerebral ischemia/reperfusion injury were weaker, while the protective effects at high dose (100 mg/kg) were similar. Our experimental findings suggest that TFLC exerts neuroprotective effects against focal cerebral ischemia/reperfusion injury in rats, and that the effects may be asso- ciated with its antioxidant activities.展开更多
The early risk of internal contaminated accumulation of 147Pm is in blood cells and endothelial cells, especially in red blood cells. Then 147Pm is selectively deposited in ultrastructure of liver cells, such as in nu...The early risk of internal contaminated accumulation of 147Pm is in blood cells and endothelial cells, especially in red blood cells. Then 147Pm is selectively deposited in ultrastructure of liver cells, such as in nucleus, nucleolus, rough endoplasmic reticulum, mitochondria and microbodies. Dense tracks also appear in mitochondria and lysosome of pedal cells within renal corpuscle, and so does in nucleus as well as in mitochondria and microbodies of epicyte of kidney near-convoluted tubule. With the prolongation of observing time, 147Pm is selectively and steadily deposited in subcellular level of organic component for bone. Substantial amount of 147Pm is taken up into the nuclear fraction of osteoclasts and osteoblasts. Particularly, in organelles 147Pm is mainly accumulated in rough endoplasmic reticulum and in mitochondria.Autoradiographic tracks especially localize in combined point between Golgi complex and transitive vesicle of rough endoplasmic reticulum. In addition, numerous 147Pm deposited in collagenous fibre within interstitial of bone cells is hardly excreted.展开更多
Scientific and reasonable indicator system is the key for evaluating citizenization level of new generation migrant workers. With reference to basic connotation of endogenous and exogenous variables and in view of cit...Scientific and reasonable indicator system is the key for evaluating citizenization level of new generation migrant workers. With reference to basic connotation of endogenous and exogenous variables and in view of citizenization characteristics of new generation migrant workers,it built an evaluation indicator system including endogenous indicators based on micro-individual and exogenous indicators based on mesourban environment and macro-national policies. Besides,combining current situation of new generation migrant workers in Jiangsu Province,it evaluated citizenization level of the indicator system,in the hope of providing certain reference for evaluating citizenization level of new generation migrant workers.展开更多
by using the method of literature, questionnaire and mathematical statistics and comparative analysis and ?research method of sichuan university high level survey of the Track and field team, sichuan university high l...by using the method of literature, questionnaire and mathematical statistics and comparative analysis and ?research method of sichuan university high level survey of the Track and field team, sichuan university high level Track and field team and the analysis of existing problems and research, in order to sichuan university of high level Track and field teams development to provide the reference.展开更多
For the retaining wall and technologies to protect river levee, many patents were applied and numerous new technologies were developed according to the installation method and material. This study installed a magic re...For the retaining wall and technologies to protect river levee, many patents were applied and numerous new technologies were developed according to the installation method and material. This study installed a magic retaining wall block, which was developed as new technology product to protect river levee from running water, in actual size experimental water channel and evaluated the hydraulic performance and the stability of technology based on the increase in the flow velocity and discharge by steps. This study divided the experiment into a total of six steps and conducted it accordingly. According to the experiment results, there was no deformation of the surface of the magic retaining wall block or any soil loss at the bottom either, under the condition of maximum flow velocity of 5.37 m/s (discharge of 7.40 m<sup>3</sup>/s). To analyze the occurrence of scour and the possibility of soil loss at the bottom of a structure due to a high flow velocity, this study conducted an image analysis of Case 6 under the condition of maximum discharge, using a drone. According to the results of an analysis through the drone, there was no soil loss or flow change due to a scour at the bottom of the magic retaining wall block. The results of this study will serve as references in designing a technology applying a magic retaining wall block, and present the methods and procedures to evaluate and verify the development of any further new technology.展开更多
Flood frequency analysis (FFA) concentrates on peak flows of flood hydrographs. However, floods that last years devastated large parts of Poland lead us to revision of the views on the assessment of flood risk in Pola...Flood frequency analysis (FFA) concentrates on peak flows of flood hydrographs. However, floods that last years devastated large parts of Poland lead us to revision of the views on the assessment of flood risk in Poland. It turned out that it is the prolonged exposure to high water on levees that causes floods, not only the water overflowing the levee crest. This is because, the levees are weakened by water and their disruption occurs when it seems that the danger is over, i.e. after passing culmination. Two main causes of inundation of embanked rivers, namely over-crest flow and wash out of the levees, are combined to assess the total risk of inundation. Therefore the risk of inundation is the total of risk of exceeding embankment crest by flood peak and risk of washout of levees. Hence, while modeling the flood events in addition to the maximum flow one should consider also the duration of high water in a river channel, Analysis of the frequency of annual peak flows based on annual maxima and peaks over threshold is the subject of countless publications. Therefore we will here mainly modeling the duration of high water levels. In the paper the two-component model of flood hydrograph shape i.e. “duration of flooding-discharge- probability of nonexceedance” (DqF), with the methodology of its parameters estimation for stationary case was developed as a completion to the classical FFA with possible extension to non stationary flood regime. The model combined with the technical evaluation of probability of levees breach due to the d-days duration of flow above alarm stage gives the annual probability of inundation caused by the embankment breaking. The results of theoretical research were supplemented by a practical example of the model application to the series for daily flow in the Vistula River in Szczucin. Regardless promising results, this method is still in its infancy despite its great cognitive potential and practical importance. Therefore, we would like to point to the usefulness and necessity of the DqF models to the one-dimensional analysis of the peak flood hydrographs and to flood risk analysis. This approach constitutes a new direction in FFA for embanked rivers.展开更多
基金Financial supports from University of Padua(Grant No.BIRD181859)Italian Ministry of Education,University and Research(MIUR),Redreef-PRIN 2017 Call(Grant No.2017YPMBWJ)are gratefully acknowledged.
文摘Levees are essential structures in flood defense systems,and their failures can lead to devastating consequences on the surrounding territories.One of the failure mechanisms mostly controlled by the foundation soil stratigraphy is the instability of the land side slope,triggered by the development of high uplift pressures in the foundation.This complex phenomenon has been investigated experimentally with centrifuge tests or large-scale tests and numerically with the limit equilibrium method(LEM)and the finite element method(FEM).In this work,we applied a multiphase formulation of the material point method(MPM)to analyze the development of toe uplift instability mechanism,from the onset of failure to large displacements.The numerical model is inspired by an experiment carried out in a geotechnical centrifuge test by Allersma and Rohe(2003).The comparison with the experiment allows for understanding critical pore pressure triggering large displacements in the foundation soils.Moreover,we numerically evaluated the impact of different values of foundation soils’hydraulic conductivity on the failure mechanism.The results show that hydraulic conductivity mainly influences the time of failure onset and the extension of shear localization at depth.Finally,the advantages of using large displacement approaches in the safety assessment of earth structures are discussed.Unlike FEM,there are no issues with element distortions generating difficulties with numerical convergence,allowing for full postfailure reproduction.This capability permits precise quantification of earth structure damages and post-failure displacements.The ensuing reinforcement systems’design is no longer over-conservative,with a significant reduction in associated costs.
基金supported by the Special Fund for Public Welfare Industry of the Ministry of Water Resources of China (Grant No. 201001007)
文摘Levees are affected by over-exploitation of river sand and river adjustments after the formation of sand pits. The slope stability is seriously threatened, drawing wide concern among experts and scholars in the area of water conservancy. This study analyzed the uncertainties of slope stability of levees under river sand mining conditions, including uncertainty caused by interest- driven over-exploitation by sand mining contractors, and uncertainty of the distance from the slope or sand pit to the bottom of the levee under the action of cross-flow force after the sand pit forms. Based on the results of uncertainty analysis, the distribution and related parameters of these uncertainties were estimated according to the Yangtze River sand mining practice. A risk model of the slope instability of a levee under river sand mining conditions was built, and the possibility of slope instability under different slope gradients in a certain reach of the Yangtze River was calculated with the Monte Carlo method and probability combination method. The results indicated that the probability of instability risk rose from 2.38% to 4.74% as the pits came into being.
基金the scientific research foundation of Zhejiang Provincial Natural Science Foundation of China (LTGG24E090002)Zhejiang University of Water Resources and Electric Power (xky2022013)+1 种基金Major Science and Technology Plan Project of Zhejiang Provincial Department of Water Resources (RA1904)the water conservancy management department, Zhejiang Design Institute of Water Conservancy and Hydro Electric Power Co., Ltd. and the construction company for their support。
文摘The stability of the ancient flood control levees is mainly influenced by water level fluctuations, groundwater concentration and rainfalls. This paper takes the Lanxi ancient levee as a research object to study the evolution laws of its seepage, displacement and stability before and after reinforcement with the upside-down hanging wells and grouting curtain through numerical simulation methods combined with experiments and observations. The study results indicate that the filled soil is less affected by water level fluctuations and groundwater concentration after reinforcement. A high groundwater level is detrimental to the levee's long-term stability, and the drainage issues need to be fully considered. The deformation of the reinforced levee is effectively controlled since the fill deformation is mainly borne by the upside-down hanging wells. The safety factors of the levee before reinforcement vary significantly with the water level. The minimum value of the safety factors is 0.886 during the water level decreasing period, indicating a very high risk of the instability. While it reached 1.478 after reinforcement, the stability of the ancient levee is improved by a large margin.
文摘The Dnieper River headwaters are in Russia’s Valdai Hills and the river flows south to the Black Sea. The Dnieper River provides a waterway in which to transport goods to and from various European nations. In addition, the dams on the river provide hydro power. There are approximately 2260 km of Dnieper waterways in Russia, in Belarus, and within Ukraine. The Dnieper River has numerous urban centers including Smolensk in Russia, Mogilev in Belarus and Kiev and Zaporizhzhya in Ukraine. The worst nuclear accident in history unfolded, in the Dnieper River watershed, in northern Ukraine as a reactor at the Chernobyl nuclear power plant exploded and burned. After an accident, such as Chernobyl, radionuclide contaminated bodies of water via direct deposition from the air, discharge as effluent or indirectly from catchment basin washout. When radionuclides contaminate large bodies of water, they are quickly dispersing and accumulate in water bottom sediments, benthos, aquatic plants, and bottom feeding fish. The main pathways to humans are through contamination of drinking-water, from use of water for irrigation of food crops, and consumption of contaminated fish. Kakhovka Dam on the Dnieper River was destroyed during the Russian-Ukraine conflict and the dam needs to rebuild as soon as possible. Perhaps lessons learned by the US Army Corps of Engineers (USACE), after using TNT to blow up the Birds Point front line levee on the Mississippi River in May of 2011, can be applied to the man-induced 2023 Kakhovka Dam breach. The Birds Point man-induced levee breaches and subsequent flooding of farmland resulted in the loss of the 2011 crops and damaged the future soil productivity. The strong current and sweep of the water through the three man-induced levee breaches on the New Madrid floodway levee created deep gullies, displaced tons of soil, and damaged irrigation equipment, farms, and homes. The New Madrid floodway agricultural lands were restored, and the environmental damages were mitigated. The Kakhovka Dam destruction caused widespread flooding which affected settlements and farmland across the Dnieper watershed. The presence and breach-induced redistribution of Chernobyl-derived nuclides is an additional condition not present at the New Madrid man-induced levee breach. Four canal networks have become disconnected from the feeder reservoir. The canals were the source of drinking water for 700,000 people living in southern Ukraine. The Kakhovka canals also provided irrigation for vast areas of farmland. The water loss from the canals adversely affected food production in the region. The primary objectives of this paper are to assess lessons learned by the USACE and apply them in Ukraine to help restore and manage the Dnieper lifeline and watershed.
文摘Basaltic eruptions have been observed to produce structurally complex, compound 'a'ā lava flow fields but their morphometry has only rarely been systematically documented. We document the morphology and structures that developed during the emplacement of the 1982 basaltic lava flow field at Mount Cameroon (MC) volcano over a period of one month. Topographic cross-sections (13 in total) were made from the main vent (~2700 m above sea level (a.s.l)) down to a distance of 5.5 km on the cooled lava surface. Details obtained from these cross-sections include: channel width and depth, levee slope, lava surface morphology and structures. These details enabled us to describe the physical characteristics of the 1982 lava flow field. The inclined (12° - 19°) underlying slopes on which this flow field was emplaced resulted in a characteristic channelized basaltic 'a'ā flow field morphology. This includes a proximal zone characterised by reduced flow width and depth with no subsidiary channels. Slab-crusted lava dominates the proximal channel distinctively bent into convex upward shapes. 7 secondary vents were observed for the first time ~2.5 km from the main vent, with heights of 3 - 15 m. This is a very significant observation since it points to the fact that the flow field emplacement may have been a product of 2 eruption sites as observed at other historical MC lava flow fields. This supposition was ruled out by further evidence obtained from other surface features within the flow field. The presence of these secondary vents still has an important bearing in lava flow hazard assessment. Field observations also revealed the presence of tumulus. This is a novel feature for MC lava flow fields. It displayed a close similarity to those observed at other basaltic volcanoes occurring in association with clinker 'a'ā lava, lava tubes, squeeze-ups and pressure ridges. Channels are well-defined, bounded by levees. Accretional and overflow levees dominate in this flow field. This lava flow-field attained a final length of 7.5 km, an area of 2.6 × 106 m2 and volume of 1.3 × 107 m3. The presence of tumulus indicates internal inflation together with structures such as pressure ridges and squeeze-ups which are also attributed to compressive forces. Our observations suggest that real-time monitoring of compound lava flow fields evolution at MC may reveal the emplacement mechanisms of complex structures such as the secondary vents (~2180 - 2011 m a.s.l.) observed within the flow field. In addition, documenting the occurrence, morphology and link between lava tubes, tumulus and squeeze-ups may allow us to determine the risk of reactivation of a stalled flow front. This will thereby enhance the ability to track and assess hazards posed by lava flow emplacement from MC-like volcanoes.
文摘Vagueness is a natural character of language. Vagueness of journalistic English exists in lexical level and syntactic level as well. Lexical vagueness in journalistic English is usually resulted from the indefinite meaning of words, while in syntactic level, it may be resulted from the combined use of vague words or the employment of some sentence patterns. This thesis aims to help readers to understand journalistic English from the perspective of vague language.
基金Supported by the National Key R&D Program of China(No.2016YFC1402002)the Fifteenth Session Program between China and Bulgaria Scientific and Technological Cooperation Committee(No.15-13)the Major Project of Nanjing Hydraulic Research Institute Funds(Nos.Y218005,Y218006)
文摘In the context of global climate change,the impact of group-occurring ocean dynamic disasters on China's offshore areas is becoming more and more intense.The study of the effect of existing ocean dynamic disasters on offshore hazard-bearing bodies mostly focuses on the effect of single disaster-causing factors,and it is still insufficient to study storm surge and dynamic wave coupling&reinforcement effects as well as the process of the dynamic response of such hazard-bearing bodies as seawalls.This study firstly realized the synchronous process of water level and wave through continuous tide generation and wave generation by the wave maker and tide generating device,so as to realize the dynamic coupling simulation of storm surge and wave in the laboratory.Then the physical model test of the typical seawall section was carried out under the dynamic coupling of storm surge and wave as well as at a conventional fixed water level respectively.In the process of test wave overtopping discharge and the damage process of the levee crown and backwall of seawalls were observed and compared,and their damage mechanism was also studied.
基金supported by the National Natural Science Foundation of China (42171394, 41601467)。
文摘The wheat canopy reflectance spectrum is affected by many internal and external factors such as diseases and growth stage. Separating the effects of disease stress on the crop from the observed mixed signals is crucial for increasing the precision of remote sensing monitoring of wheat stripe rust. The canopy spectrum of winter wheat infected by stripe rust was processed with the difference-in-differences(DID) algorithm used in econometrics. The monitoring accuracies of wheat stripe rust before and after processing with the DID algorithm were compared in the presence of various external factors, disease severity, and several simulated satellite sensors. The correlation between the normalized difference vegetation index processed by the DID algorithm(NDVI-DID) and the disease severity level(SL) increased in comparison with the NDVI before processing. The increase in precision in the natural disease area in the field in the presence of large differences in growth stage, growth, planting, and management of the crop was greater than that in the controlled experiment. For low disease levels(SL < 20%), the R2 of the regression of NDVI-DIDon SL was 38.8% higher than that of the NDVI and the root mean square error(RMSE) was reduced by 11.1%. The increase in precision was greater than that for the severe level(SL > 40%).According to the measured hyperspectral data, the spectral reflectance of three satellite sensor levels was simulated. The wide-band NDVI was calculated. Compared with the wide-band NDVI and vegetation indexes(VI) before DID processing, there were increases in the correlation between SL and the various types of VIS-DID, as well as in the correlation between SL and NDVI-DID. It is feasible to apply the DID algorithm to multispectral satellite data and diverse types of VISfor monitoring wheat stripe rust. Our results improve the quantification of independent effects of stripe rust infection on canopy reflectance spectrum,increase the precision of remote sensing monitoring of wheat stripe rust, and provide a reference for remote sensing monitoring of other crop diseases.
文摘Whenever levees on the Ohio or Mississippi rivers are breached, there are soil damages in the flooded areas that impact agricultural management capacities and crop productivity. Floodwaters coat the entire flooded land surface with sediments which include a variety of pollutants, nutrients and contaminants. The nature of the sediments in floodwaters varies with the topographical and land use characteristics of the watershed. The soil types, hydro-geologic features, volume of flow, time of year, agricultural use of fertilizers, pesticides, and other chemicals as well as upstream point sources such as sewage treatment plants, storm sewer drainage and other urban land uses will affect the extent of the contamination and fine scale remediation needed. Preliminary characterization and measurement of soils and sediment deposit at three locations that experienced recent natural and man induced levee breaches are analyzed to identify patterns of soil and crop damage. These findings provide guidance to the restoration of craters, gullies, land scoured areas and contaminated sediment depositional sites with a goal to improve decision-making, risk analysis and remedial effectiveness. Recommendations include: (1) improve characterization and measurement of eroded soils and distribution of sediment contaminants after levee breaching; (2) assess contamination effects on soil productivity and long term agricultural production in order to understand the impacts of flooding on agricultural soils; (3) evaluate reconstruction investments needed to repair levees based on return of the land to productivity and increased landscape resilience by reducing vulnerability to future flooding and levee breaching stress.
文摘One only needs to study the soil and geologic history and location of the ancient Mississippi and Ohio Rivers to understand why Len Small levee if patched will continue to fail. Much of Dogtooth Bend located in Alexander County, Illinois was originally in the ancient Ohio River valley (Figure 1) alluvial sediments north and east of the confluence with the ancient Mississippi River. The ancient Ohio River valley soils underlain by alluvial sediments and have been easily eroded by the re-aligning modern Mississippi River which now travels through the bedrock controlled Thebes Gap (Figure 2) and into the Ancient Ohio river valley. The primary objectives of this paper are: 1) to explain why Len Small levee, Alexander County, Illinois, US will continue to breach during major flooding events if repaired and 2) to develop a new combined raised causeway and levee system which will provide a Mississippi River floodwater bypass, be sustainable, encourage and fund a land use change, restore the degraded highway road beds, protect remaining Dogtooth Bend farmsteads and farmland that have not yet been degraded by past flooding events and provide floodwater storage during major flooding events at the confluence of the Mississippi and Ohio Rivers.
文摘Public and private levee systems may not be robust enough to address flooding risk to agriculture under changing climate conditions. Of concern are levee protected riverine bottomlands with intensive agricultural uses and diminished wetland systems that give resilience to floodplain hydrologic functions. In the United States natural and induced levee breaching has caused soil damage, loss of agricultural productivity, and public tension among agricultural landowners, urban residents, and environmental interests. Risk management and adaptive capacity of this humannatural system could be improved by assessments of 1) soil damage and 2) stakeholder values, fears, and knowledge about the riverine bottomland agroecosystem.
文摘To study the influence of coal mining on the stability of river levees,a mechanical model of mining-induced river levee deformation was established.This was based on the mining-induced deformation characteristics of river levees and the application of a typical surface subsidence function.Meanwhile,a failure criterion was proposed for river levees.Using some examples,the deformation of,and stress distribution through,river levees under the influence of mining were obtained:the maximum tensile stress on the bottom of the river levee was less than the tensile strength,under which circumstance the river levee remained undamaged.Meanwhile,this research analyzed the influence of three factors including the maximum surface subsidence wmax,half-length of surface subsidence basin L,and foundation coefficient k on the stability of river levees.Results showed that reducing the mining height of the working face and the foundation co-efficient,and increasing the strike length of the working face could reduce the influence of mining on river levees.These results provided a theoretical basis for predicting the mining-induced deformation and failure of river levees.
文摘In coordination of the construction of concealed work of levee project, the research on the soil quality of Jingnan levee in Hubei province was carried out through test. The results demonstrate: ① the Jingnan levee embankment is in bad quality, the compaction degree of most levee sections doesn’t reach 92%; the average compressive coefficient of the levee backfilled soils is about 0.3 MPa; the seepage coefficients are 10\+ -5 ~10\+ -6 cm/s generally; the levee body was compacted unevenly; ② the soil layers of the levee foundation are distributed complicatedly and generally in low density; the void ratios of various soils are mostly in 0.7~1, indicating that the foundation soils are generally in loose state; ③ the pH value of levee body and foundation is 7.05~8.95, attributing to weak alkaline and not producing significant influence on liquid-plastic limit and shear strength of soils, the content of strongly soluble salt of levee foundation soils is 0.01%~0.52% and will not produce great influence on the mechanical behaviours of soils.
基金supported by the National Natural Science Foundation of China,No.81001457,81072686University Scientific Research Projects of Anhui Province in China,No.KJ2012B104Key Program of University Scientific Research Projects of Anhui Province in China,No.2006kj095A
文摘In this study, we hypothesized that total flavonoid of Litsea coreana leve (TFLC) protects against focal cerebral ischemia/reperfusion injury. TFLC (25, 50, 100 mg/kg) was administered orally to a rat model of focal ischemia/reperfusion injury, while the free radical scavenging agent, edaravone, was used as a positive control drug. Results of neurological deficit scoring, 2,3,5-triphenyl tetrazolium chloride staining, hematoxylin-eosin staining and biochemical tests showed that TFLC at different doses significantly alleviated cerebral ischemia-induced neurological deficits and histopathological changes, and reduced infarct volume. Moreover, it suppressed the increase in the levels of nitrates plus nitrites, malondialdehyde and lactate dehydrogenase, and it diminished the reduction in glu- tathione, superoxide dismutase and catalase activities induced by cerebral ischemia/reperfusion injury. Compared with edaravone, the protective effects of TFLC at low and medium doses (25, 50 mg/kg) against cerebral ischemia/reperfusion injury were weaker, while the protective effects at high dose (100 mg/kg) were similar. Our experimental findings suggest that TFLC exerts neuroprotective effects against focal cerebral ischemia/reperfusion injury in rats, and that the effects may be asso- ciated with its antioxidant activities.
文摘The early risk of internal contaminated accumulation of 147Pm is in blood cells and endothelial cells, especially in red blood cells. Then 147Pm is selectively deposited in ultrastructure of liver cells, such as in nucleus, nucleolus, rough endoplasmic reticulum, mitochondria and microbodies. Dense tracks also appear in mitochondria and lysosome of pedal cells within renal corpuscle, and so does in nucleus as well as in mitochondria and microbodies of epicyte of kidney near-convoluted tubule. With the prolongation of observing time, 147Pm is selectively and steadily deposited in subcellular level of organic component for bone. Substantial amount of 147Pm is taken up into the nuclear fraction of osteoclasts and osteoblasts. Particularly, in organelles 147Pm is mainly accumulated in rough endoplasmic reticulum and in mitochondria.Autoradiographic tracks especially localize in combined point between Golgi complex and transitive vesicle of rough endoplasmic reticulum. In addition, numerous 147Pm deposited in collagenous fibre within interstitial of bone cells is hardly excreted.
基金Supported by Philosophical and Social Science Research Project in Colleges and Universities of Jiangsu Province in 2013(2013ZDAXM002)
文摘Scientific and reasonable indicator system is the key for evaluating citizenization level of new generation migrant workers. With reference to basic connotation of endogenous and exogenous variables and in view of citizenization characteristics of new generation migrant workers,it built an evaluation indicator system including endogenous indicators based on micro-individual and exogenous indicators based on mesourban environment and macro-national policies. Besides,combining current situation of new generation migrant workers in Jiangsu Province,it evaluated citizenization level of the indicator system,in the hope of providing certain reference for evaluating citizenization level of new generation migrant workers.
文摘by using the method of literature, questionnaire and mathematical statistics and comparative analysis and ?research method of sichuan university high level survey of the Track and field team, sichuan university high level Track and field team and the analysis of existing problems and research, in order to sichuan university of high level Track and field teams development to provide the reference.
文摘For the retaining wall and technologies to protect river levee, many patents were applied and numerous new technologies were developed according to the installation method and material. This study installed a magic retaining wall block, which was developed as new technology product to protect river levee from running water, in actual size experimental water channel and evaluated the hydraulic performance and the stability of technology based on the increase in the flow velocity and discharge by steps. This study divided the experiment into a total of six steps and conducted it accordingly. According to the experiment results, there was no deformation of the surface of the magic retaining wall block or any soil loss at the bottom either, under the condition of maximum flow velocity of 5.37 m/s (discharge of 7.40 m<sup>3</sup>/s). To analyze the occurrence of scour and the possibility of soil loss at the bottom of a structure due to a high flow velocity, this study conducted an image analysis of Case 6 under the condition of maximum discharge, using a drone. According to the results of an analysis through the drone, there was no soil loss or flow change due to a scour at the bottom of the magic retaining wall block. The results of this study will serve as references in designing a technology applying a magic retaining wall block, and present the methods and procedures to evaluate and verify the development of any further new technology.
基金This research project was partly financed by the grant of the Polish National Science Centre titled“Modern statistical models for analysis of flood frequency and features of flood waves”,decision nr DEC-2012/05/B/ST10/00482.
文摘Flood frequency analysis (FFA) concentrates on peak flows of flood hydrographs. However, floods that last years devastated large parts of Poland lead us to revision of the views on the assessment of flood risk in Poland. It turned out that it is the prolonged exposure to high water on levees that causes floods, not only the water overflowing the levee crest. This is because, the levees are weakened by water and their disruption occurs when it seems that the danger is over, i.e. after passing culmination. Two main causes of inundation of embanked rivers, namely over-crest flow and wash out of the levees, are combined to assess the total risk of inundation. Therefore the risk of inundation is the total of risk of exceeding embankment crest by flood peak and risk of washout of levees. Hence, while modeling the flood events in addition to the maximum flow one should consider also the duration of high water in a river channel, Analysis of the frequency of annual peak flows based on annual maxima and peaks over threshold is the subject of countless publications. Therefore we will here mainly modeling the duration of high water levels. In the paper the two-component model of flood hydrograph shape i.e. “duration of flooding-discharge- probability of nonexceedance” (DqF), with the methodology of its parameters estimation for stationary case was developed as a completion to the classical FFA with possible extension to non stationary flood regime. The model combined with the technical evaluation of probability of levees breach due to the d-days duration of flow above alarm stage gives the annual probability of inundation caused by the embankment breaking. The results of theoretical research were supplemented by a practical example of the model application to the series for daily flow in the Vistula River in Szczucin. Regardless promising results, this method is still in its infancy despite its great cognitive potential and practical importance. Therefore, we would like to point to the usefulness and necessity of the DqF models to the one-dimensional analysis of the peak flood hydrographs and to flood risk analysis. This approach constitutes a new direction in FFA for embanked rivers.