Organic compounds have the advantages of green sustainability and high designability,but their high solubility leads to poor durability of zinc-organic batteries.Herein,a high-performance quinone-based polymer(H-PNADB...Organic compounds have the advantages of green sustainability and high designability,but their high solubility leads to poor durability of zinc-organic batteries.Herein,a high-performance quinone-based polymer(H-PNADBQ)material is designed by introducing an intramolecular hydrogen bonding(HB)strategy.The intramolecular HB(C=O⋯N-H)is formed in the reaction of 1,4-benzoquinone and 1,5-naphthalene diamine,which efficiently reduces the H-PNADBQ solubility and enhances its charge transfer in theory.In situ ultraviolet-visible analysis further reveals the insolubility of H-PNADBQ during the electrochemical cycles,enabling high durability at different current densities.Specifically,the H-PNADBQ electrode with high loading(10 mg cm^(-2))performs a long cycling life at 125 mA g^(-1)(>290 cycles).The H-PNADBQ also shows high rate capability(137.1 mAh g^(−1)at 25 A g^(−1))due to significantly improved kinetics inducted by intramolecular HB.This work provides an efficient approach toward insoluble organic electrode materials.展开更多
We study the spin-1/2 two-dimensional Shastry–Sutherland spin model by exact diagonalization of clusters with periodic boundary conditions, developing an improved level spectroscopic technique using energy gaps betwe...We study the spin-1/2 two-dimensional Shastry–Sutherland spin model by exact diagonalization of clusters with periodic boundary conditions, developing an improved level spectroscopic technique using energy gaps between states with different quantum numbers. The crossing points of some of the relative(composite) gaps have much weaker finite-size drifts than the normally used gaps defined only with respect to the ground state, thus allowing precise determination of quantum critical points even with small clusters. Our results support the picture of a spin liquid phase intervening between the well-known plaquette-singlet and antiferromagnetic ground states, with phase boundaries in almost perfect agreement with a recent density matrix renormalization group study, where much larger cylindrical lattices were used [J. Yang et al., Phys. Rev. B 105, L060409(2022)]. The method of using composite low-energy gaps to reduce scaling corrections has potentially broad applications in numerical studies of quantum critical phenomena.展开更多
Qaidam Basin in Qinghai Province has rich multiple complex resources with salt lakes as the core.These resources form a special condition for the development of green economy,having rare and particular nature.The
The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Base...The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Based Image Retrieval(CBIR)has been widely used in varied applications.But,the results produced by the usage of a single image feature are not satisfactory.So,multiple image features are used very often for attaining better results.But,fast and effective searching for relevant images from a database becomes a challenging task.In the previous existing system,the CBIR has used the combined feature extraction technique using color auto-correlogram,Rotation-Invariant Uniform Local Binary Patterns(RULBP)and local energy.However,the existing system does not provide significant results in terms of recall and precision.Also,the computational complexity is higher for the existing CBIR systems.In order to handle the above mentioned issues,the Gray Level Co-occurrence Matrix(GLCM)with Deep Learning based Enhanced Convolution Neural Network(DLECNN)is proposed in this work.The proposed system framework includes noise reduction using histogram equalization,feature extraction using GLCM,similarity matching computation using Hierarchal and Fuzzy c-Means(HFCM)algorithm and the image retrieval using DLECNN algorithm.The histogram equalization has been used for computing the image enhancement.This enhanced image has a uniform histogram.Then,the GLCM method has been used to extract the features such as shape,texture,colour,annotations and keywords.The HFCM similarity measure is used for computing the query image vector's similarity index with every database images.For enhancing the performance of this image retrieval approach,the DLECNN algorithm is proposed to retrieve more accurate features of the image.The proposed GLCM+DLECNN algorithm provides better results associated with high accuracy,precision,recall,f-measure and lesser complexity.From the experimental results,it is clearly observed that the proposed system provides efficient image retrieval for the given query image.展开更多
Background and objectives Skin defects are one of the primary problems that occur in post-harvest grading and processing of loquats.Skin defects lead to the loquat being easily destroyed during transportation and stor...Background and objectives Skin defects are one of the primary problems that occur in post-harvest grading and processing of loquats.Skin defects lead to the loquat being easily destroyed during transportation and storage,which causes the risk of other loquats being infected,affecting the selling price.Materials and Methods In this paper,a method combining band radio image with an improved three-phase level set segmentation algorithm(ITPLSSM)is proposed to achieve high accuracy,rapid,and non-destructive detection of skin defects of loquats.Principal component analysis(PCA)was used to find the characteristic wavelength and PC images to distinguish four types of skin defects.The best band ratio image based on characteristic wavelength was determined.Results The band ratio image(Q782/944)based on PC2 image is the best segmented image.Based on pseudo-color image enhancement,morphological processing,and local clustering criteria,the band ratio image(Q782/944)has better contrast between defective and normal areas in loquat.Finally,the ITPLSSM was used to segment the processing band ratio image(Q782/944),with an accuracy of 95.28%.Conclusions The proposed ITPLSSM method is effective in distinguishing four types of skin defects.Meanwhile,it also effectively segments images with intensity inhomogeneities.展开更多
The management of College Students’ status is a professional policy work. The point of regulating college students’learningbehavior is registration management. According to the analysis on the issue of popular educa...The management of College Students’ status is a professional policy work. The point of regulating college students’learningbehavior is registration management. According to the analysis on the issue of popular education stage of college registration management,it’s important to reinforce the registration management of affi liated college and put forward work ideas, formulate detailed measures. Thatcan regulate and optimize students’ learning behavior and promote school spirit, teaching style, study style, improve the effectiveness of theeducation of students.展开更多
By coupling the standard and the conservative level set methods, an improved conservative level set method is proposed to capture the free surface smoothly with excellent mass conservation properties. The improvement ...By coupling the standard and the conservative level set methods, an improved conservative level set method is proposed to capture the free surface smoothly with excellent mass conservation properties. The improvement lies in the fact that the surface normal is computed from a signed distance function instead of the Heaviside function. Comparing with the conservative level set method, the inevitable numerical discretization errors to point the surface normal in arbitrary directions could be eliminated, and the instability of the numerical solution could be improved efficiently. The advantage is clear in the straightforward combination of the standard level set and the conservative level set and a little effort is taken in coding compared with other coupled methods. The present method is validated with several well-known benchmark problems, including the 2-D Zalesak's disk rotating, the 3-D sphere stretching in deformation vortex and the dam break flow simulation. The results are shown to be in good agreement with the published experimental data and numerical results.展开更多
基金supported by the National Natural Science Foundation of China (22279063 and 52001170)the Fundamental Research Funds for the Central Universities+2 种基金Tianjin Natural Science Foundation (No. 22JCYBJC00590)the financial support by the Ministry of Education, Singapore, under its Academic Research Fund Tier 1 Thematic (RT8/22)the Haihe Laboratory of Sustainable Chemical Transformations, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) for financial support
文摘Organic compounds have the advantages of green sustainability and high designability,but their high solubility leads to poor durability of zinc-organic batteries.Herein,a high-performance quinone-based polymer(H-PNADBQ)material is designed by introducing an intramolecular hydrogen bonding(HB)strategy.The intramolecular HB(C=O⋯N-H)is formed in the reaction of 1,4-benzoquinone and 1,5-naphthalene diamine,which efficiently reduces the H-PNADBQ solubility and enhances its charge transfer in theory.In situ ultraviolet-visible analysis further reveals the insolubility of H-PNADBQ during the electrochemical cycles,enabling high durability at different current densities.Specifically,the H-PNADBQ electrode with high loading(10 mg cm^(-2))performs a long cycling life at 125 mA g^(-1)(>290 cycles).The H-PNADBQ also shows high rate capability(137.1 mAh g^(−1)at 25 A g^(−1))due to significantly improved kinetics inducted by intramolecular HB.This work provides an efficient approach toward insoluble organic electrode materials.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11874080 and 11734002)supported as a Simons Investigator by the Simons Foundation (Grant No. 511064)。
文摘We study the spin-1/2 two-dimensional Shastry–Sutherland spin model by exact diagonalization of clusters with periodic boundary conditions, developing an improved level spectroscopic technique using energy gaps between states with different quantum numbers. The crossing points of some of the relative(composite) gaps have much weaker finite-size drifts than the normally used gaps defined only with respect to the ground state, thus allowing precise determination of quantum critical points even with small clusters. Our results support the picture of a spin liquid phase intervening between the well-known plaquette-singlet and antiferromagnetic ground states, with phase boundaries in almost perfect agreement with a recent density matrix renormalization group study, where much larger cylindrical lattices were used [J. Yang et al., Phys. Rev. B 105, L060409(2022)]. The method of using composite low-energy gaps to reduce scaling corrections has potentially broad applications in numerical studies of quantum critical phenomena.
文摘Qaidam Basin in Qinghai Province has rich multiple complex resources with salt lakes as the core.These resources form a special condition for the development of green economy,having rare and particular nature.The
文摘The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Based Image Retrieval(CBIR)has been widely used in varied applications.But,the results produced by the usage of a single image feature are not satisfactory.So,multiple image features are used very often for attaining better results.But,fast and effective searching for relevant images from a database becomes a challenging task.In the previous existing system,the CBIR has used the combined feature extraction technique using color auto-correlogram,Rotation-Invariant Uniform Local Binary Patterns(RULBP)and local energy.However,the existing system does not provide significant results in terms of recall and precision.Also,the computational complexity is higher for the existing CBIR systems.In order to handle the above mentioned issues,the Gray Level Co-occurrence Matrix(GLCM)with Deep Learning based Enhanced Convolution Neural Network(DLECNN)is proposed in this work.The proposed system framework includes noise reduction using histogram equalization,feature extraction using GLCM,similarity matching computation using Hierarchal and Fuzzy c-Means(HFCM)algorithm and the image retrieval using DLECNN algorithm.The histogram equalization has been used for computing the image enhancement.This enhanced image has a uniform histogram.Then,the GLCM method has been used to extract the features such as shape,texture,colour,annotations and keywords.The HFCM similarity measure is used for computing the query image vector's similarity index with every database images.For enhancing the performance of this image retrieval approach,the DLECNN algorithm is proposed to retrieve more accurate features of the image.The proposed GLCM+DLECNN algorithm provides better results associated with high accuracy,precision,recall,f-measure and lesser complexity.From the experimental results,it is clearly observed that the proposed system provides efficient image retrieval for the given query image.
基金the financial support provided by the National Natural Science Foundation of China(No.12103019)National Science and Technology Award Backup Project Cultivation Plan(No.20192AEI91007),China。
文摘Background and objectives Skin defects are one of the primary problems that occur in post-harvest grading and processing of loquats.Skin defects lead to the loquat being easily destroyed during transportation and storage,which causes the risk of other loquats being infected,affecting the selling price.Materials and Methods In this paper,a method combining band radio image with an improved three-phase level set segmentation algorithm(ITPLSSM)is proposed to achieve high accuracy,rapid,and non-destructive detection of skin defects of loquats.Principal component analysis(PCA)was used to find the characteristic wavelength and PC images to distinguish four types of skin defects.The best band ratio image based on characteristic wavelength was determined.Results The band ratio image(Q782/944)based on PC2 image is the best segmented image.Based on pseudo-color image enhancement,morphological processing,and local clustering criteria,the band ratio image(Q782/944)has better contrast between defective and normal areas in loquat.Finally,the ITPLSSM was used to segment the processing band ratio image(Q782/944),with an accuracy of 95.28%.Conclusions The proposed ITPLSSM method is effective in distinguishing four types of skin defects.Meanwhile,it also effectively segments images with intensity inhomogeneities.
文摘The management of College Students’ status is a professional policy work. The point of regulating college students’learningbehavior is registration management. According to the analysis on the issue of popular education stage of college registration management,it’s important to reinforce the registration management of affi liated college and put forward work ideas, formulate detailed measures. Thatcan regulate and optimize students’ learning behavior and promote school spirit, teaching style, study style, improve the effectiveness of theeducation of students.
基金supported by the National Natural Science Foundation of China(Grant No.51279050)the National High Technology Research and Development Program of China(863 Program,Grant No.2012BAK10B04)the Non-profit Industry Financial Program of Ministry of Water Resources of China(Grant No.201301058)
文摘By coupling the standard and the conservative level set methods, an improved conservative level set method is proposed to capture the free surface smoothly with excellent mass conservation properties. The improvement lies in the fact that the surface normal is computed from a signed distance function instead of the Heaviside function. Comparing with the conservative level set method, the inevitable numerical discretization errors to point the surface normal in arbitrary directions could be eliminated, and the instability of the numerical solution could be improved efficiently. The advantage is clear in the straightforward combination of the standard level set and the conservative level set and a little effort is taken in coding compared with other coupled methods. The present method is validated with several well-known benchmark problems, including the 2-D Zalesak's disk rotating, the 3-D sphere stretching in deformation vortex and the dam break flow simulation. The results are shown to be in good agreement with the published experimental data and numerical results.