In this paper, push-over analysis for tall concrete structures was made and a corresponding computer program was given. Several kinds of elements in the program were considered to meet the demand of tall buildings wit...In this paper, push-over analysis for tall concrete structures was made and a corresponding computer program was given. Several kinds of elements in the program were considered to meet the demand of tall buildings with complex structural type. These elements included beam-column element for beams and columns, single slice wall element and three vertical line element for walls, and tube-wall element for tubes. Computational example for verifying the models indicates that the result obtained by this method is identical with a well-known test result and the program can be used to search for the full process of structural reaction, even the softening stage of the structure. With this push-over analysis method, an actual tall building with complex structural type was analyzed, and the result has been put into practice of the structural design of the building. Key words push-over analysis - tall structure - complex type - nonlinearity - earthquake level - weak storey MSC2000 74S05 - 74L99 Project supported by the National Natural Science Foundation of China (Grant No. 50025821)展开更多
BACKGROUND There is an increasingly strong demand for appearance and physical beauty in social life,marriage,and other aspects with the development of society and the improvement of material living standards.An increa...BACKGROUND There is an increasingly strong demand for appearance and physical beauty in social life,marriage,and other aspects with the development of society and the improvement of material living standards.An increasing number of people have improved their appearance and physical shape through aesthetic plastic surgery.The female breast plays a significant role in physical beauty,and droopy or atrophied breasts can frequently lead to psychological inferiority and lack of confidence in women.This,in turn,can affect their mental health and quality of life.AIM To analyze preoperative and postoperative self-image pressure-level changes of autologous fat breast augmentation patients and their impact on social adaptability.METHODS We selected 160 patients who underwent autologous fat breast augmentation at the First Affiliated Hospital of Xinxiang Medical University from January 2020 to December 2022 using random sampling method.The general information,selfimage pressure level,and social adaptability of the patients were investigated using a basic information survey,body image self-assessment scale,and social adaptability scale.The self-image pressure-level changes and their effects on the social adaptability of patients before and after autologous fat breast augmentation were analyzed.RESULTS We collected 142 valid questionnaires.The single-factor analysis results showed no statistically significant difference in the self-image pressure level and social adaptability score of patients with different ages,marital status,and monthly income.However,there were significant differences in social adaptability among patients with different education levels and employment statuses.The correlation analysis results revealed a significant correlation between the self-image pressure level and social adaptability score before and after surgery.Multiple factors analysis results showed that the degree of concern caused by appearance in selfimage pressure,the degree of possible behavioral intervention,the related distress caused by body image,and the influence of body image on social life influenced the social adaptability of autologous fat breast augmentation patients.CONCLUSION The self-image pressure on autologous fat breast augmentation patients is inversely proportional to their social adaptability.展开更多
This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are b...This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are briefly reviewed and the procedure for assessing dam's strength and stability is described. As an example, a detailed analysis for an actual dam Nululin dam is performed. A practical method for studying built-dams based on the prototype observation data is described.展开更多
Building collapse mostly can be caused by the loss of loading capacity in a primary structural component,resulting in the failure of surrounding elements,which in turn cause a failure propagation.Progressive collapses...Building collapse mostly can be caused by the loss of loading capacity in a primary structural component,resulting in the failure of surrounding elements,which in turn cause a failure propagation.Progressive collapses may be accidental,due to design deficiencies or errors,material failure or natural phenomenon(e.g.earthquakes)but it can be prevented by upgrade the concrete components’material[1,2].Well-engineered RC buildings generally have a good performance under normal loading conditions.However,faulty design,construction errors,material deterioration,and overloading are always occurred.When part of structure fails,the total load in the whole system will not disappear,which means the load will be redistributed unevenly to the adjacent part of structure.This phenomenon revealed that sustained high stresses in RC elements can lead to catastrophic collapse.Due to very few of papers did the research on the RC elements under high stress level sustained load,relevant experiments should be performed in this area.This paper gives the suggestions about how to apply the load in an experiment if researchers want to know the behavior of elements near to collapse especially focus on RC columns.展开更多
This paper proposes a multiscale isogeometric topology optimization(ITO)method where the configuration and layout of microstructures are optimized simultaneously.At micro scale,a shape deformation method is presented ...This paper proposes a multiscale isogeometric topology optimization(ITO)method where the configuration and layout of microstructures are optimized simultaneously.At micro scale,a shape deformation method is presented to transform a prototype microstructure(PM)for obtaining a series of graded microstructures(GMs),where microstructural skeleton based on the level set framework is applied to retain more topology features and improve the connectability.For the macro scale calculation,the effective mechanical properties can be estimated by means of the numerical homogenization method.By adopting identical non-uniform rational basis splines(NURBS)as basis functions for both parameterized level set model and isogeometric calculation model,the isogeometric analysis(IGA)is integrated into the level set method,which contributes to improving the accuracy and efficiency.Numerical examples demonstrate that,the proposed method is effective in improving the performance and manufacturability.展开更多
文摘In this paper, push-over analysis for tall concrete structures was made and a corresponding computer program was given. Several kinds of elements in the program were considered to meet the demand of tall buildings with complex structural type. These elements included beam-column element for beams and columns, single slice wall element and three vertical line element for walls, and tube-wall element for tubes. Computational example for verifying the models indicates that the result obtained by this method is identical with a well-known test result and the program can be used to search for the full process of structural reaction, even the softening stage of the structure. With this push-over analysis method, an actual tall building with complex structural type was analyzed, and the result has been put into practice of the structural design of the building. Key words push-over analysis - tall structure - complex type - nonlinearity - earthquake level - weak storey MSC2000 74S05 - 74L99 Project supported by the National Natural Science Foundation of China (Grant No. 50025821)
文摘BACKGROUND There is an increasingly strong demand for appearance and physical beauty in social life,marriage,and other aspects with the development of society and the improvement of material living standards.An increasing number of people have improved their appearance and physical shape through aesthetic plastic surgery.The female breast plays a significant role in physical beauty,and droopy or atrophied breasts can frequently lead to psychological inferiority and lack of confidence in women.This,in turn,can affect their mental health and quality of life.AIM To analyze preoperative and postoperative self-image pressure-level changes of autologous fat breast augmentation patients and their impact on social adaptability.METHODS We selected 160 patients who underwent autologous fat breast augmentation at the First Affiliated Hospital of Xinxiang Medical University from January 2020 to December 2022 using random sampling method.The general information,selfimage pressure level,and social adaptability of the patients were investigated using a basic information survey,body image self-assessment scale,and social adaptability scale.The self-image pressure-level changes and their effects on the social adaptability of patients before and after autologous fat breast augmentation were analyzed.RESULTS We collected 142 valid questionnaires.The single-factor analysis results showed no statistically significant difference in the self-image pressure level and social adaptability score of patients with different ages,marital status,and monthly income.However,there were significant differences in social adaptability among patients with different education levels and employment statuses.The correlation analysis results revealed a significant correlation between the self-image pressure level and social adaptability score before and after surgery.Multiple factors analysis results showed that the degree of concern caused by appearance in selfimage pressure,the degree of possible behavioral intervention,the related distress caused by body image,and the influence of body image on social life influenced the social adaptability of autologous fat breast augmentation patients.CONCLUSION The self-image pressure on autologous fat breast augmentation patients is inversely proportional to their social adaptability.
文摘This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are briefly reviewed and the procedure for assessing dam's strength and stability is described. As an example, a detailed analysis for an actual dam Nululin dam is performed. A practical method for studying built-dams based on the prototype observation data is described.
文摘Building collapse mostly can be caused by the loss of loading capacity in a primary structural component,resulting in the failure of surrounding elements,which in turn cause a failure propagation.Progressive collapses may be accidental,due to design deficiencies or errors,material failure or natural phenomenon(e.g.earthquakes)but it can be prevented by upgrade the concrete components’material[1,2].Well-engineered RC buildings generally have a good performance under normal loading conditions.However,faulty design,construction errors,material deterioration,and overloading are always occurred.When part of structure fails,the total load in the whole system will not disappear,which means the load will be redistributed unevenly to the adjacent part of structure.This phenomenon revealed that sustained high stresses in RC elements can lead to catastrophic collapse.Due to very few of papers did the research on the RC elements under high stress level sustained load,relevant experiments should be performed in this area.This paper gives the suggestions about how to apply the load in an experiment if researchers want to know the behavior of elements near to collapse especially focus on RC columns.
基金National Key R&D Program of China(2018YFB1700803,2018YFB1700804).
文摘This paper proposes a multiscale isogeometric topology optimization(ITO)method where the configuration and layout of microstructures are optimized simultaneously.At micro scale,a shape deformation method is presented to transform a prototype microstructure(PM)for obtaining a series of graded microstructures(GMs),where microstructural skeleton based on the level set framework is applied to retain more topology features and improve the connectability.For the macro scale calculation,the effective mechanical properties can be estimated by means of the numerical homogenization method.By adopting identical non-uniform rational basis splines(NURBS)as basis functions for both parameterized level set model and isogeometric calculation model,the isogeometric analysis(IGA)is integrated into the level set method,which contributes to improving the accuracy and efficiency.Numerical examples demonstrate that,the proposed method is effective in improving the performance and manufacturability.