Objective To investigate the prediction effect of neural networks for seismic response of structure under the Levenberg Marquardt(LM) algorithm. Results Based on identification and prediction ability of neural netw...Objective To investigate the prediction effect of neural networks for seismic response of structure under the Levenberg Marquardt(LM) algorithm. Results Based on identification and prediction ability of neural networks for nonlinear systems, and combined with LM algorithm, a multi layer forward networks is adopted to predict the seismic responses of structure. The networks is trained in batch by the shaking table test data of three floor reinforced concrete structure firstly, then the seismic responses of structure are predicted under the unused excitation data, and the predict responses are compared with the experiment responses. The error curves between the prediction and the experimental results show the efficiency of the method. Conclusion LM algorithm has very good convergence rate, and the neural networks can predict the seismic response of the structure well.展开更多
Levenberg-Marquard(tLM)算法与最小二乘(Least Square,LS)方法关系密切,标度总体最小二乘(Scaled Total Least Square,STLS)是最小二乘,数据最小二乘(Data Least Square,DLS)与总体最小二乘(Total Least Square,TLS)的统一与推广,但是...Levenberg-Marquard(tLM)算法与最小二乘(Least Square,LS)方法关系密切,标度总体最小二乘(Scaled Total Least Square,STLS)是最小二乘,数据最小二乘(Data Least Square,DLS)与总体最小二乘(Total Least Square,TLS)的统一与推广,但是它与LM算法的关系尚不清楚。给出了一种求STLS解的算法及其子空间解释与拓扑解释,利用矩阵分解揭示了LM算法与STLS的密切关系,结果表明:阻尼因子使得LS解转变为STLS解;噪声子空间的剔除与系数矩阵条件数的控制保证了LM算法的稳健性与收敛速度;STLS的鲁棒性保障了LM算法处理过参数化问题的能力。展开更多
本文针对小波网络现有学习算法的不足 ,把 L evenberg- Marquardt算法 (简称 L M算法 )和最小二乘算法有机地结合在一起 ,提出了一种新的小波网络混合学习算法 .在该混合算法中 L M算法用来训练小波网络的非线性参数 ,而最小二乘算法用...本文针对小波网络现有学习算法的不足 ,把 L evenberg- Marquardt算法 (简称 L M算法 )和最小二乘算法有机地结合在一起 ,提出了一种新的小波网络混合学习算法 .在该混合算法中 L M算法用来训练小波网络的非线性参数 ,而最小二乘算法用来训练线性参数 .最后以辩识一个混沌系统为例进行了数值仿真 ,并与改进的 BP算法和单纯 L M算法进行了比较 。展开更多
文摘Objective To investigate the prediction effect of neural networks for seismic response of structure under the Levenberg Marquardt(LM) algorithm. Results Based on identification and prediction ability of neural networks for nonlinear systems, and combined with LM algorithm, a multi layer forward networks is adopted to predict the seismic responses of structure. The networks is trained in batch by the shaking table test data of three floor reinforced concrete structure firstly, then the seismic responses of structure are predicted under the unused excitation data, and the predict responses are compared with the experiment responses. The error curves between the prediction and the experimental results show the efficiency of the method. Conclusion LM algorithm has very good convergence rate, and the neural networks can predict the seismic response of the structure well.
文摘Levenberg-Marquard(tLM)算法与最小二乘(Least Square,LS)方法关系密切,标度总体最小二乘(Scaled Total Least Square,STLS)是最小二乘,数据最小二乘(Data Least Square,DLS)与总体最小二乘(Total Least Square,TLS)的统一与推广,但是它与LM算法的关系尚不清楚。给出了一种求STLS解的算法及其子空间解释与拓扑解释,利用矩阵分解揭示了LM算法与STLS的密切关系,结果表明:阻尼因子使得LS解转变为STLS解;噪声子空间的剔除与系数矩阵条件数的控制保证了LM算法的稳健性与收敛速度;STLS的鲁棒性保障了LM算法处理过参数化问题的能力。
文摘本文针对小波网络现有学习算法的不足 ,把 L evenberg- Marquardt算法 (简称 L M算法 )和最小二乘算法有机地结合在一起 ,提出了一种新的小波网络混合学习算法 .在该混合算法中 L M算法用来训练小波网络的非线性参数 ,而最小二乘算法用来训练线性参数 .最后以辩识一个混沌系统为例进行了数值仿真 ,并与改进的 BP算法和单纯 L M算法进行了比较 。