Furfural is directly converted to levulinate esters(isopropyl levulinate and furan-2-ylmethyl-levulinate) as potential biofuel feedstocks, through a combined catalytic strategy. Nb;O;-ZrO;mixed oxide microspheres ar...Furfural is directly converted to levulinate esters(isopropyl levulinate and furan-2-ylmethyl-levulinate) as potential biofuel feedstocks, through a combined catalytic strategy. Nb;O;-ZrO;mixed oxide microspheres are used as bifunctional catalysts for hydrogen-transfer hydrogenation and acid-catalyzed alcoholysis in isopropanol. Bifunctional catalysts improve sustainability of furfural conversion through process intensification. Hydrogen transfer hydrogenation from isopropanol avoids dangerous hydrogen gas, and abates process and environmental costs. Isopropyl levulinate and furan-2-ylmethyl-levulinate are the main products that can be applied as blending components in biodiesel or hydrocarbon fuels.展开更多
基金supported by the National Natural Science Foundation of China (21403248, 21174148, 21101161, and 21304101)
文摘Furfural is directly converted to levulinate esters(isopropyl levulinate and furan-2-ylmethyl-levulinate) as potential biofuel feedstocks, through a combined catalytic strategy. Nb;O;-ZrO;mixed oxide microspheres are used as bifunctional catalysts for hydrogen-transfer hydrogenation and acid-catalyzed alcoholysis in isopropanol. Bifunctional catalysts improve sustainability of furfural conversion through process intensification. Hydrogen transfer hydrogenation from isopropanol avoids dangerous hydrogen gas, and abates process and environmental costs. Isopropyl levulinate and furan-2-ylmethyl-levulinate are the main products that can be applied as blending components in biodiesel or hydrocarbon fuels.