期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhancing the Activity of N/C Catalyst for Oxygen Reduction Reaction by Fluorination
1
作者 Yun Wu Xinyu Lu +4 位作者 Jiawei Li Hengchang Lin Maosen Pan Gengyu Cao Yuta Nabae 《材料科学与工程(中英文A版)》 2023年第3期68-81,共14页
The synthesis of non-metal carbon catalysts with high catalytic activity for ORR(oxygen reduction reaction)in acidic media is a great challenge in the field of PEMFC(proton exchange membrane fuel cells).In this resear... The synthesis of non-metal carbon catalysts with high catalytic activity for ORR(oxygen reduction reaction)in acidic media is a great challenge in the field of PEMFC(proton exchange membrane fuel cells).In this research,N-and F-codoped carbon catalyst with high performance was synthesized from ZIF-8 and NH4F,which are easily prepared structure and common chemical,respectively.The as-prepared catalyst has a high surface area of 789 m2/g and micro-porosity of~2 nm,facilitating more active sites to the ORR and O2 mass transfer in the diffusion of the catalyst matrix,respectively.The prepared N/C(NH4F)catalyst exhibited an onset potential of 0.94 V(vs.RHE)and a half-wave potential of 0.65 V in 0.1 M HClO4 solution.It also showed excellent durability in the cycling test of 10,000 times and a degradation shift of half-wave potential 70 mV was observed.Its diffusion-limiting current reached 5.85 mA/cm2 next to the theoretic value of 6 mA/cm2,suggesting that it has plenty of active sites for ORR,which could be attributed to fluorine introduction into the N/C catalyst.It proved that the introduction of fluorine into the structure of the N/C catalyst fine-tunes the Lewis basic sites of the carbon atoms adjacent to pyridinic and graphitic nitrogen species,facilitating the adsorption of oxygen molecules in the initial step of the ORR.The correlation between the N/C catalyst activity and the fluorination provides new insight into the ORR catalyst design. 展开更多
关键词 ORR Tafel slope F-doped synergistic effect lewis basicity
下载PDF
<i>In Vitro</i>Characterization of Cell Surface Properties of 14 Vaginal <i>Lactobacillus</i>Strains as Potential Probiotics
2
作者 Shao-Ji Li Jae-Seong So 《Advances in Microbiology》 2021年第2期144-155,共12页
Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Human-origin <i>Lactobacillus</i> is a preferable source of probiotic bacteria. This stud... Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Human-origin <i>Lactobacillus</i> is a preferable source of probiotic bacteria. This study screened 14 vaginal <i>Lactobacillus</i> strains as probiotic candidates by investigating probiotic-related cell surface characteristics including cell surface hydrophobicity (CSH), Lewis acidity/basicity, autoaggregation, and biofilm formation. Moderate to high CSH and autoaggregation, high basicity and low acidity were prevalent in the 14 tested strains. Biofilm formation varied in a large range among the 14 tested strains. CSH showed a high correlation with Lewis acidity and autoaggregation, while Lewis acidity was highly correlated with autoaggregation and biofilm formation. Four strains were selected as promising probiotic strains. This study was the first one to compare antibiotic sensitivity between biofilm-forming cells and planktonic cells of <i>Lactobacillus</i> species, and found that biofilm-forming cells of a <i>L. fermentum</i> strain had a significantly higher survival rate than planktonic cells in cefotaxime, cefmetazole and tetracycline, but were as sensitive to oxacillin and ampicillin as planktonic cells were. 展开更多
关键词 Lactobacillus PROBIOTICS Cell Surface Hydrophobicity lewis Acidity lewis basicity Autoaggregation BIOFILM Antibiotics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部