Bone defects and non-union are prevalent in clinical orthopedy,and the outcomes of current treatments are often suboptimal.Bone tissue engineering offers a promising approach to treating these conditions effectively.B...Bone defects and non-union are prevalent in clinical orthopedy,and the outcomes of current treatments are often suboptimal.Bone tissue engineering offers a promising approach to treating these conditions effectively.Bone morphogenetic protein 9(BMP9)can commit mesenchymal stem cells to osteogenic lineage,and a knowledge of the underlying mechanisms may help advance the field of bone tissue engineering.Leucine-rich repeats con-taining G protein-coupled receptor 4(LGR4),a member of G protein-coupled receptors,is essential for modulating bone development.This study is aimed at investigating the impact of LGR4 on BMP9-induced osteogenesis in mesenchymal stem cells as well as the underlying mechanisms.Bone marrow stromal cells from BMp9-knockout mice exhibited diminished LGR4 expression,and exogenous LGR4 clearly restored the impaired osteogenic potency of the bone marrow stromal cells.Furthermore,LGR4 expression was increased by BMP9 in C3H10T1/2 cells.LGR4 augmented the benefits of BMP9-induced osteogenic markers and bone formation,whereas LGR4 inhibition restricted these effects.Meanwhile,the BMP9-induced li-pogenic markers were increased by LGR4 inhibition.The protein levels of Raptor and p-Stat3 were elevated by BMP9.Raptor knockdown or p-Stat3 suppression attenuated the osteoblastic markers and LGR4 expression brought on by BMP9.LGR4 significantly reversed the blocking ef-fect of Raptor knockdown or p-Stat3 suppression on the BMP9-induced osteoblastic markers.Raptor interacts with p-Stat3,and p-Stat3 activates the LGR4 promoter activity.In conclusion,LGR4 boosts BMP9 osteoblastic potency in mesenchymal stem cells,and BMP9 may up-regulate LGR4 via the mTORC1/Stat3 signal activation.展开更多
基金All animal experiments were approved by The Ethics Committee of Chongqing Medical University(No.2022030).
文摘Bone defects and non-union are prevalent in clinical orthopedy,and the outcomes of current treatments are often suboptimal.Bone tissue engineering offers a promising approach to treating these conditions effectively.Bone morphogenetic protein 9(BMP9)can commit mesenchymal stem cells to osteogenic lineage,and a knowledge of the underlying mechanisms may help advance the field of bone tissue engineering.Leucine-rich repeats con-taining G protein-coupled receptor 4(LGR4),a member of G protein-coupled receptors,is essential for modulating bone development.This study is aimed at investigating the impact of LGR4 on BMP9-induced osteogenesis in mesenchymal stem cells as well as the underlying mechanisms.Bone marrow stromal cells from BMp9-knockout mice exhibited diminished LGR4 expression,and exogenous LGR4 clearly restored the impaired osteogenic potency of the bone marrow stromal cells.Furthermore,LGR4 expression was increased by BMP9 in C3H10T1/2 cells.LGR4 augmented the benefits of BMP9-induced osteogenic markers and bone formation,whereas LGR4 inhibition restricted these effects.Meanwhile,the BMP9-induced li-pogenic markers were increased by LGR4 inhibition.The protein levels of Raptor and p-Stat3 were elevated by BMP9.Raptor knockdown or p-Stat3 suppression attenuated the osteoblastic markers and LGR4 expression brought on by BMP9.LGR4 significantly reversed the blocking ef-fect of Raptor knockdown or p-Stat3 suppression on the BMP9-induced osteoblastic markers.Raptor interacts with p-Stat3,and p-Stat3 activates the LGR4 promoter activity.In conclusion,LGR4 boosts BMP9 osteoblastic potency in mesenchymal stem cells,and BMP9 may up-regulate LGR4 via the mTORC1/Stat3 signal activation.