China is the largest solar water heater producer and market in the world.Despite the fast growth and an installed capacity that accounts for the majority of the global gross,China's per capita solar hot water capa...China is the largest solar water heater producer and market in the world.Despite the fast growth and an installed capacity that accounts for the majority of the global gross,China's per capita solar hot water capacity is still very low,implying a huge margin of market potential;and the recognition of the industry in the global market is handicapped by the scattered scale of production and inconsistent product quality.To ensure continued growth of China's solar water heating(SWH) industry,Chinese Government has established a series of national SWH standards,three national testing centers,and a certification program to lay the foundation for the development of the Golden Sun product labeling system.China General Certification Center(CGC) developed the Golden Sun product certification and labeling system on a pass/fail basis evaluating with established criteria.The system was designed to help manufacturers acclimate to explicit consistent requirements and to identify and fix the deficiencies in the design and execution of the program itself.Timely revision and integration of the national standards are recommended to accommodate the test procedures and requirements to new technologies and the evolving SWH market.Strict implementation of the Golden Sun certification and labeling system are suggested to avail improving the quality control and forging internationally reputable brands of Chinese solar water heating products.展开更多
The modern built environment has been developed in a context of readily-available,low-cost energy from highly concentrated fossil fuels.Today’s global energy landscape has dramatically changed;energy costs have becom...The modern built environment has been developed in a context of readily-available,low-cost energy from highly concentrated fossil fuels.Today’s global energy landscape has dramatically changed;energy costs have become significant in the operation of buildings,and the sector uses a major portion of the global resources of fossil fuels.In recent years a major focus of green building development in North America and internationally has been on setting up sustainable energy practices for the built environment.This focus has advanced energy conservation and efficiency measures for buildings;on-site clean energy generation is now positioned as a critical next step in meeting increasing energy demands while enhancing the functionality and comfort of buildings.“Solar Architecture”as a green building concept addresses sustainable energy practices and the needs of the three major tiers of the built environment:community planning,existing buildings,and new construction.This article uses a case study of integrating renewable energy engineering into university campus energy planning to demonstrate some of the roles energy engineering plays in our built environment.As part of a master planning process for Dalhousie University,solar energy generation potential mapping and the SolarStarRating™system were used to facilitate the integration of solar technologies into the community energy mix.The process identified the buildings most suited to retrofitting with solar technologies,and enabled the best opportunities to be investigated.展开更多
A combined system of heating, power and biogas (CHPB) system has been developed and tested in a single building in MinQin County, Gansu Province, China. The proposed system satisfies the user’s demand of power, heat,...A combined system of heating, power and biogas (CHPB) system has been developed and tested in a single building in MinQin County, Gansu Province, China. The proposed system satisfies the user’s demand of power, heat, and gas. The CHPB system can effectively overcome seasonal, climate and many other factors which affect the production of the renewable energy. For this purpose, experiments were conducted extensively during the winter period from November 2014 to March 2015. Compared with conventional energy supply systems meets the test household indoor temperature level, the system can reduce the consumption of standard coal 5819.30 kg/year, and save energy costs 11,046.20 yuan/year, the system’s payback period of 4.37 years, also can save 27.03 tons of carbon dioxide emissions. As a result, the CHPB system have been successfully tested for single building, use solar energy and biomass as input and produce power, heat, and gas steadily. These results contributed to the construction of energy supply systems.展开更多
The Linear Mirror II is an innovative system to concentrate solar energy, developed by Isomorph SRL. In this paper, a solar-air heat exchanger of new conception is presented and tested together with a Linear Mirror II...The Linear Mirror II is an innovative system to concentrate solar energy, developed by Isomorph SRL. In this paper, a solar-air heat exchanger of new conception is presented and tested together with a Linear Mirror II. The heat exchanger surface is selective with respect to direction and position of light absorption and emission and once heated by the Linear Mirror II, can reach an air temperature of up to 230°C.展开更多
Solar energy as well as biomass energy techniques suffers from disadvantages, which in some cases limit their potential for substituting fossil fuels. For instance, solar energy is difficult to store, and many kinds o...Solar energy as well as biomass energy techniques suffers from disadvantages, which in some cases limit their potential for substituting fossil fuels. For instance, solar energy is difficult to store, and many kinds of biomass are not suited for combustion, in spite of the fact that they have high energy contents. We describe and industrial size system, which has the goal of overcoming some of these limitations by combining solar- and biomass power. This is achieved by roasting residual biomass by means of hot air provided by solar power only. The solar power is collected by three “Linear Mirror” solar concentrator, they are designed to achieve high efficiency also at northern latitudes. Each one is equipped with an innovative solar-air heat exchanger. The hot air is delivered to a roasting device filled with humid residual biomass. We report the performance of this system from a first commissioning run. The system is intended to help create a closed-cycle economy by means of transforming waste biomasses to a high-quality combustible.展开更多
文摘China is the largest solar water heater producer and market in the world.Despite the fast growth and an installed capacity that accounts for the majority of the global gross,China's per capita solar hot water capacity is still very low,implying a huge margin of market potential;and the recognition of the industry in the global market is handicapped by the scattered scale of production and inconsistent product quality.To ensure continued growth of China's solar water heating(SWH) industry,Chinese Government has established a series of national SWH standards,three national testing centers,and a certification program to lay the foundation for the development of the Golden Sun product labeling system.China General Certification Center(CGC) developed the Golden Sun product certification and labeling system on a pass/fail basis evaluating with established criteria.The system was designed to help manufacturers acclimate to explicit consistent requirements and to identify and fix the deficiencies in the design and execution of the program itself.Timely revision and integration of the national standards are recommended to accommodate the test procedures and requirements to new technologies and the evolving SWH market.Strict implementation of the Golden Sun certification and labeling system are suggested to avail improving the quality control and forging internationally reputable brands of Chinese solar water heating products.
文摘The modern built environment has been developed in a context of readily-available,low-cost energy from highly concentrated fossil fuels.Today’s global energy landscape has dramatically changed;energy costs have become significant in the operation of buildings,and the sector uses a major portion of the global resources of fossil fuels.In recent years a major focus of green building development in North America and internationally has been on setting up sustainable energy practices for the built environment.This focus has advanced energy conservation and efficiency measures for buildings;on-site clean energy generation is now positioned as a critical next step in meeting increasing energy demands while enhancing the functionality and comfort of buildings.“Solar Architecture”as a green building concept addresses sustainable energy practices and the needs of the three major tiers of the built environment:community planning,existing buildings,and new construction.This article uses a case study of integrating renewable energy engineering into university campus energy planning to demonstrate some of the roles energy engineering plays in our built environment.As part of a master planning process for Dalhousie University,solar energy generation potential mapping and the SolarStarRating™system were used to facilitate the integration of solar technologies into the community energy mix.The process identified the buildings most suited to retrofitting with solar technologies,and enabled the best opportunities to be investigated.
文摘A combined system of heating, power and biogas (CHPB) system has been developed and tested in a single building in MinQin County, Gansu Province, China. The proposed system satisfies the user’s demand of power, heat, and gas. The CHPB system can effectively overcome seasonal, climate and many other factors which affect the production of the renewable energy. For this purpose, experiments were conducted extensively during the winter period from November 2014 to March 2015. Compared with conventional energy supply systems meets the test household indoor temperature level, the system can reduce the consumption of standard coal 5819.30 kg/year, and save energy costs 11,046.20 yuan/year, the system’s payback period of 4.37 years, also can save 27.03 tons of carbon dioxide emissions. As a result, the CHPB system have been successfully tested for single building, use solar energy and biomass as input and produce power, heat, and gas steadily. These results contributed to the construction of energy supply systems.
文摘The Linear Mirror II is an innovative system to concentrate solar energy, developed by Isomorph SRL. In this paper, a solar-air heat exchanger of new conception is presented and tested together with a Linear Mirror II. The heat exchanger surface is selective with respect to direction and position of light absorption and emission and once heated by the Linear Mirror II, can reach an air temperature of up to 230°C.
文摘Solar energy as well as biomass energy techniques suffers from disadvantages, which in some cases limit their potential for substituting fossil fuels. For instance, solar energy is difficult to store, and many kinds of biomass are not suited for combustion, in spite of the fact that they have high energy contents. We describe and industrial size system, which has the goal of overcoming some of these limitations by combining solar- and biomass power. This is achieved by roasting residual biomass by means of hot air provided by solar power only. The solar power is collected by three “Linear Mirror” solar concentrator, they are designed to achieve high efficiency also at northern latitudes. Each one is equipped with an innovative solar-air heat exchanger. The hot air is delivered to a roasting device filled with humid residual biomass. We report the performance of this system from a first commissioning run. The system is intended to help create a closed-cycle economy by means of transforming waste biomasses to a high-quality combustible.