期刊文献+
共找到2,438篇文章
< 1 2 122 >
每页显示 20 50 100
Small extracellular vesicles from hypoxia-preconditioned bone marrow mesenchymal stem cells attenuate spinal cord injury via miR-146a-5p-mediated regulation of macrophage polarization
1
作者 Zeyan Liang Zhelun Yang +5 位作者 Haishu Xie Jian Rao Xiongjie Xu Yike Lin Chunhua Wang Chunmei Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2259-2269,共11页
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)... Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury. 展开更多
关键词 bone marrow mesenchymal stem cells hypoxia preconditioning interleukin-1 receptor-associated kinase 1 MACROPHAGES mesenchymal stem cells small extracellular vesicles spinal cord injury
下载PDF
Bone marrow mesenchymal stem cells and exercise restore motor function following spinal cord injury by activating PI3K/AKT/mTOR pathway 被引量:3
2
作者 Xin Sun Li-Yi Huang +8 位作者 Hong-Xia Pan Li-Juan Li Lu Wang Gai-Qin Pei Yang Wang Qing Zhang Hong-Xin Cheng Cheng-Qi He Quan Wei 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1067-1075,共9页
Although many therapeutic interventions have shown promise in treating spinal cord injury, focusing on a single aspect of repair cannot achieve successful and functional regeneration in patients following spinal cord ... Although many therapeutic interventions have shown promise in treating spinal cord injury, focusing on a single aspect of repair cannot achieve successful and functional regeneration in patients following spinal cord injury. In this study, we applied a combinatorial approach for treating spinal cord injury involving neuroprotection and rehabilitation, exploiting cell transplantation and functional sensorimotor training to promote nerve regeneration and functional recovery. Here, we used a mouse model of thoracic contusive spinal cord injury to investigate whether the combination of bone marrow mesenchymal stem cell transplantation and exercise training has a synergistic effect on functional restoration. Locomotor function was evaluated by the Basso Mouse Scale, horizontal ladder test, and footprint analysis. Magnetic resonance imaging, histological examination, transmission electron microscopy observation, immunofluorescence staining, and western blotting were performed 8 weeks after spinal cord injury to further explore the potential mechanism behind the synergistic repair effect. In vivo, the combination of bone marrow mesenchymal stem cell transplantation and exercise showed a better therapeutic effect on motor function than the single treatments. Further investigations revealed that the combination of bone marrow mesenchymal stem cell transplantation and exercise markedly reduced fibrotic scar tissue, protected neurons, and promoted axon and myelin protection. Additionally, the synergistic effects of bone marrow mesenchymal stem cell transplantation and exercise on spinal cord injury recovery occurred via the PI3 K/AKT/mTOR pathway. In vitro, experimental evidence from the PC12 cell line and primary cortical neuron culture also demonstrated that blocking of the PI3 K/AKT/mTOR pathway would aggravate neuronal damage. Thus, bone marrow mesenchymal stem cell transplantation combined with exercise training can effectively restore motor function after spinal cord injury by activating the PI3 K/AKT/mTOR pathway. 展开更多
关键词 axon growth bone marrow mesenchymal stem cell exercise training mTOR neuroprotection NEUROTROPHIN REMYELINATION scar formation spinal cord injury synaptic plasticity
下载PDF
Cell transplantation therapies for spinal cord injury focusing on bone marrow mesenchymal stem cells:Advances and challenges
3
作者 Li-Yi Huang Xin Sun +3 位作者 Hong-Xia Pan Lu Wang Cheng-Qi He Quan Wei 《World Journal of Stem Cells》 SCIE 2023年第5期385-399,共15页
Spinal cord injury(SCI)is a devastating condition with complex pathological mechanisms that lead to sensory,motor,and autonomic dysfunction below the site of injury.To date,no effective therapy is available for the tr... Spinal cord injury(SCI)is a devastating condition with complex pathological mechanisms that lead to sensory,motor,and autonomic dysfunction below the site of injury.To date,no effective therapy is available for the treatment of SCI.Recently,bone marrow-derived mesenchymal stem cells(BMMSCs)have been considered to be the most promising source for cellular therapies following SCI.The objective of the present review is to summarize the most recent insights into the cellular and molecular mechanism using BMMSC therapy to treat SCI.In this work,we review the specific mechanism of BMMSCs in SCI repair mainly from the following aspects:Neuroprotection,axon sprouting and/or regeneration,myelin regeneration,inhibitory microenvironments,glial scar formation,immunomodulation,and angiogenesis.Additionally,we summarize the latest evidence on the application of BMMSCs in clinical trials and further discuss the challenges and future directions for stem cell therapy in SCI models. 展开更多
关键词 Spinal cord injury bone marrow derived mesenchymal stem cells Neuroprotection AXON MYELIN Inhibitory microenvironment
下载PDF
Bone-marrow mesenchymal stem cells reduce rat intestinal ischemia-reperfusion injury, ZO-1 downregulation and tight junction disruption via a TNF-α-regulated mechanism 被引量:23
4
作者 Zhong-Yang Shen Jing Zhang +1 位作者 Hong-Li Song Wei-Ping Zheng 《World Journal of Gastroenterology》 SCIE CAS 2013年第23期3583-3595,共13页
AIM: To investigate the effect of bone-marrow mesenchymal stem cells (BM MSCs) on the intestinal mucosa barrier in ischemia/reperfusion (I/R) injury. METHODS: BM MSCs were isolated from male Sprague-Dawley rats by den... AIM: To investigate the effect of bone-marrow mesenchymal stem cells (BM MSCs) on the intestinal mucosa barrier in ischemia/reperfusion (I/R) injury. METHODS: BM MSCs were isolated from male Sprague-Dawley rats by density gradient centrifugation, cultured, and analyzed by flow cytometry. I/R injury was induced by occlusion of the superior mesenteric artery for 30 min. Rats were treated with saline, BM MSCs (via intramucosal injection) or tumor necrosis factor (TNF)-α blocking antibodies (via the tail vein). I/R injury was assessed using transmission electron microscopy, hematoxylin and eosin (HE) staining, immunohistochemistry, western blotting and enzyme linked immunosorbent assay.RESULTS: Intestinal permeability increased, tight junctions (TJs) were disrupted, and zona occludens 1 (ZO-1) was downregulated after I/R injury. BM MSCs reduced intestinal mucosal barrier destruction, ZO-1 downregulation, and TJ disruption. The morphological abnormalities after intestinal I/R injury positively correlated with serum TNF-α levels. Administration of anti-TNF-α IgG or anti-TNF-α receptor 1 antibodies attenuated the intestinal ultrastructural changes, ZO-1 downregulation, and TJ disruption. CONCLUSION: Altered serum TNF-α levels play an important role in the ability of BM MSCs to protect against intestinal I/R injury. 展开更多
关键词 bone MARROW mesenchymal stem cells Zona occludens 1 ISCHEMIA-REPERFUSION injury Intestinal MUCOSA Tumor necrosis factor-α
下载PDF
Glial cell-derived neurotrophic factor mRNA expression in a rat model of spinal cord injury following bone marrow stromal cell transplantation 被引量:13
5
作者 Lei Li Gang Lu +5 位作者 Yanfeng Wang Hong Gao XinXu Lunhao Bai Lunhao Bai Huan Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第10期1056-1059,共4页
BACKGROUND: Several animal experiments utilizing bone marrow stromal cell (BMSC) transplantation for the treatment of spinal cord injury have proposed a hypothesis that BMSC transplantation effects are associated w... BACKGROUND: Several animal experiments utilizing bone marrow stromal cell (BMSC) transplantation for the treatment of spinal cord injury have proposed a hypothesis that BMSC transplantation effects are associated with increased glial cell-derived neurotrophic factor (GDNF) expression. OBJECTIVE: To confirm the effects of BMSC transplantation on GDNF mRNA expression in rats with spinal cord injury by reverse transcription-polymerase chain reaction (RT-PCR). DESIGN, TIME AND SETTING: The present molecular, cell biology experiment was performed at the Key Laboratory of Children's Congenital Malformation, Ministry of Health of China & Department of Developmental Biology, Basic Medical College, China Medical University between March 2006 and May 2007. MATERIALS: Sixty healthy Wistar rats aged 2-4-months and of either gender were included in this study. Spinal cord injury was induced in all rats by hemisection of T9 on the left side. RT-PCR kits were purchased from TaKaRa Company, China. Type 9600 RCR amplifier was provided by Perkin Elmer Company, USA. METHODS: Three rats were selected for BMSC culture and subsequent transplantation (after three passages). Of the remaining 57 rats, nine were selected for sham-operation (sham-operated group), where only the T9 spinal cord was exposed without hemisection. A total of 48 rats were randomly and evenly divided into BMSC transplantation and model groups. In the BMSC transplantation group, following spinal cord injury induction, each rat was administered a BMSC suspension tbrougb two injection sites selected on the gray and white matter boundary caudally and cephalically, seperately and near to injury site in the spinal cord. The model group received an equal volume of PBS through the identical injection sites. MAIN OUTCOME MEASURES: At 24 and 72 hours, as well as at 7 days, following spinal cord injury, the spinal cord at the T9 segment was removed. Eight rats were allocated to each time point in the BMSC transplantation and model groups, with three rats allocated to the sham-operated group. GDNF mRNA expression was semiquantitatively analyzed by RT-PCR. RESULTS: The sham-operated group exhibited extremely low GDNF mRNA expression. GDNF mRNA expression significantly increased at 24 hours after spinal cord injury, reached a peak level at 72 hours, and slowly decreased thereafter. However, it remained higher than normal levels at 7 days (P 〈 0.05). At all time points following spinal cord injury, GDNF mRNA expression was significantly greater in the BMSC transplantation group than in the model group (P 〈 0.05). CONCLUSION: Transplantation of BMSCs into the injured spinal cord up-regulated GDNF mRNA expression, thereby promoting repair of the injured spinal cord. 展开更多
关键词 bone marrow stromal cells neurotrophic factors spinal cord injury TRANSPLANTATION
下载PDF
Growth-associated protein 43 and neural cell adhesion molecule expression following bone marrow-derived mesenchymal stem cell transplantation in a rat model of ischemic brain injury 被引量:18
6
作者 Yu Peng Qimei Zhang +3 位作者 Hui You Weihua Zhuang Ying Zhang Chengyan Li 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第13期975-980,共6页
BACKGROUND: Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) improves motor functional recovery, but the mechanisms remain unclear. OBJECTIVE: To investigate expression of growth-associated pr... BACKGROUND: Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) improves motor functional recovery, but the mechanisms remain unclear. OBJECTIVE: To investigate expression of growth-associated protein 43 (GAP-43) and neural cell adhesion molecule following BMSC transplantation to the lateral ventricle in rats with acute focal cerebral ischemic brain damage. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment using immunohistochemistry was performed at the laboratories of Department of Neurology, Renmin Hospital of Wuhan University and Doctoral Scientific Research Work Station of C-BONS PHARMA, Hubei Province, China, from January 2007 to December 2008. MATERIALS: Monoclonal mouse anti-rat 5-bromo-2-deoxyuridine and neural cell adhesion molecule antibodies were purchased from Sigma, USA; monoclonal mouse anti-rat GAP-43 antibody was purchased from Wuhan Boster, China. METHODS: Rat models of right middle cerebral artery occlusion were established using the thread method. At 1 day after middle cerebral artery occlusion, 20μL culture solution, containing 5×10^5 BMSCs, was transplanted to the left lateral ventricle using micro-injection. MAIN OUTCOME MEASURES: Scores of neurological impairment were measured to assess neural function. Expression of GAP-43 and neural cell adhesion molecule at the lesion areas was examined by immunohistochemistry. RESULTS: GAP-43 and neural cell adhesion molecule expression was low in brain tissues of the sham-operated group, but expression increased at the ischemic boundary (P 〈 0.05). Transplantation of BMSCs further enhanced expression of GAP-43 and neural cell adhesion molecule (P 〈 0.05) and remarkably improved neurological impairment of ischemic rats (P 〈 0.05). CONCLUSION: BMSC transplantation promoted neurological recovery in rats by upregulating expression of GAP-43 and neural cell adhesion molecule. 展开更多
关键词 growth-associated protein 43 neural cell adhesion molecule bone marrow-derived mesenchymal stem cell brain injury neural regeneration
下载PDF
Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury 被引量:16
7
作者 Yuzhen Dong Libin Yang +3 位作者 Lin Yang Hongxing Zhao Chao Zhang Dapeng Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第16期1520-1524,共5页
Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesen- chymal stem cells in vivo remai... Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesen- chymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury cell transplantation NEUROTROPHIN-3 bone marrowmesenchymal stem cells cell apoptosis spinal cord anterior horn motor neurons neural regeneration
下载PDF
Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia 被引量:8
8
作者 Dong Wang Jianjun Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第10期749-755,共7页
Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein whi... Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury. 展开更多
关键词 bone marrow mesenchymal stem cells electrophysiological function HYPOTHERMIA spinal cord hemisection injury TRANSPLANTATION
下载PDF
Collagen-chitosan scaffold impregnated with bone marrow mesenchymal stem cells for treatment of traumatic brain injury 被引量:9
9
作者 Feng Yan Ming Li +7 位作者 Hong-Qi Zhang Gui-Lin Li Yang Hua Ying Shen Xun-Ming Ji Chuan-Jie Wu Hong An Ming Ren 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第10期1780-1786,共7页
Combinations of biomaterials and cells can effectively target delivery of cells or other therapeutic factors to the brain to rebuild damaged nerve pathways after brain injury.Porous collagen-chitosan scaffolds were pr... Combinations of biomaterials and cells can effectively target delivery of cells or other therapeutic factors to the brain to rebuild damaged nerve pathways after brain injury.Porous collagen-chitosan scaffolds were prepared by a freeze-drying method based on brain tissue engineering.The scaffolds were impregnated with rat bone marrow mesenchymal stem cells.A traumatic brain injury rat model was established using the 300 g weight free fall impact method.Bone marrow mesenchymal stem cells/collagen-chitosan scaffolds were implanted into the injured brain.Modified neurological severity scores were used to assess the recovery of neurological function.The Morris water maze was employed to determine spatial learning and memory abilities.Hematoxylin-eosin staining was performed to measure pathological changes in brain tissue.Immunohistochemistry was performed for vascular endothelial growth factor and for 5-bromo-2-deoxyuridine(BrdU)/neuron specific enolase and BrdU/glial fibrillary acidic protein.Our results demonstrated that the transplantation of bone marrow mesenchymal stem cells and collagen-chitosan scaffolds to traumatic brain injury rats remarkably reduced modified neurological severity scores,shortened the average latency of the Morris water maze,increased the number of platform crossings,diminished the degeneration of damaged brain tissue,and increased the positive reaction of vascular endothelial growth factor in the transplantation and surrounding areas.At 14 days after transplantation,increased BrdU/glial fibrillary acidic protein expression and decreased BrdU/neuron specific enolase expression were observed in bone marrow mesenchymal stem cells in the injured area.The therapeutic effect of bone marrow mesenchymal stem cells and collagen-chitosan scaffolds was superior to stereotactic injection of bone marrow mesenchymal stem cells alone.To test the biocompatibility and immunogenicity of bone marrow mesenchymal stem cells and collagen-chitosan scaffolds,immunosuppressive cyclosporine was intravenously injected 12 hours before transplantation and 1-5 days after transplantation.The above indicators were similar to those of rats treated with bone marrow mesenchymal stem cells and collagen-chitosan scaffolds only.These findings indicate that transplantation of bone marrow mesenchymal stem cells in a collagen-chitosan scaffold can promote the recovery of neuropathological injury in rats with traumatic brain injury.This approach has the potential to be developed as a treatment for traumatic brain injury in humans.All experimental procedures were approved by the Institutional Animal Investigation Committee of Capital Medical University,China(approval No.AEEI-2015-035)in December 2015. 展开更多
关键词 nerve REGENERATION STEM CELLS COLLAGEN chitosan scaffolds traumatic BRAIN injury bone MARROW mesenchymal STEM CELLS BRAIN tissue engineering neural REGENERATION
下载PDF
Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury 被引量:10
10
作者 Chun Zhang Xijing He +1 位作者 Haopeng Li Guoyu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第11期965-974,共10页
As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment op... As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury. 展开更多
关键词 neural regeneration spinal cord injury stem cells chondroitin sulfate proteoglycans ASTROCYTES glial scar chondroitinase ABC bone marrow mesenchymal stem cells TRANSPLANTATION chemicalbarrier NEUROREGENERATION
下载PDF
Cell transplantation for the treatment of spinal cord injury–bone marrow stromal cells and choroid plexus epithelial cells 被引量:8
11
作者 Chizuka Ide Norihiko Nakano Kenji Kanekiyo 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1385-1388,共4页
Transplantation of bone marrow stromal cells (BMSCs) enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury (SCI). BMSCs did not survive long-term, disappe... Transplantation of bone marrow stromal cells (BMSCs) enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury (SCI). BMSCs did not survive long-term, disappearing from the spinal cord within 2-3 weeks after transplantation. Astrocyte-devoid areas, in which no astrocytes or oligodendrocytes were found, formed at the epicenter of the lesion. It was remarkable that numerous regenerating axons extended through such astrocyte-devoid areas. Regenerating axons were associated with Schwann cells embedded in extracellular matrices. Transplantation of choroid plexus epithelial cells (CPECs) also enhanced axonal regeneration and locomotor improvements in rats with SCI. Although CPECs disappeared from the spinal cord shortly after transplantation, an extensive outgrowth of regenerating axons occurred through astrocyte-devoid areas, as in the case of BMSC transplantation. These findings suggest that BMSCs and CPECs secret neurotrophic factors that promote tissue repair of the spinal cord, including axonal regeneration and reduced cavity formation. This means that transplantation of BMSCs and CPECs promotes "intrinsic" ability of the spinal cord to regenerate. The treatment to stimu- late the intrinsic regeneration ability of the spinal cord is the safest method of clinical application for SCI. It should be emphasized that the generally anticipated long-term survival, proliferation and differentiation of transplanted cells are not necessarily desirable from the clinical point of view of safety. 展开更多
关键词 bone marrow stromal cell choroid plexus epithelial cell spinal cord injury axonal regeneration locomotor improvement intrinsic regeneration ability
下载PDF
Protective effect of thodioloside and bone marrow mesenchymal stem cells infected with HIF-1-expressing adenovirus on acute spinal cord injury 被引量:9
12
作者 Xiao-Qin Ha Bo Yang +3 位作者 Huai-Jing Hou Xiao-Ling Cai Wan-Yuan Xiong Xu-Pan Wei 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第4期690-696,共7页
Rhodioloside has been shown to protect cells from hypoxia injury,and bone marrow mesenchymal stem cells have a good effect on tissue repair.To study the effects of rhodioloside and bone marrow mesenchymal stem cells o... Rhodioloside has been shown to protect cells from hypoxia injury,and bone marrow mesenchymal stem cells have a good effect on tissue repair.To study the effects of rhodioloside and bone marrow mesenchymal stem cells on spinal cord injury,a rat model of spinal cord injury was established using the Infinite Horizons method.After establishing the model,the rats were randomly divided into five groups.Rats in the control group were intragastrically injected with phosphate buffered saline(PBS)(5μL).PBS was injected at 6 equidistant points around 5 mm from the injury site and at a depth of 5 mm.Rats in the rhodioloside group were intragastrically injected with rhodioloside(5 g/kg)and intramuscularly injected with PBS.Rats in the mesenchymal stem cell(MSC)group were intramuscularly injected with PBS and intramuscularly with MSCs(8×10^6/mL in a 50-μL cell suspension).Rats in the Ad-HIF-MSC group were intragastrically injected with PBS and intramuscularly injected with HIF-1 adenovirus-infected MSCs.Rats in the rhodioloside+Ad-HIF-MSC group were intramuscularly injected with MSCs infected with the HIF-1 adenovirus and intragastrically injected with rhodioloside.One week after treatment,exercise recovery was evaluated with a modified combined behavioral score scale.Hematoxylin-eosin staining and Pischingert’s methylene blue staining were used to detect any histological or pathological changes in spinal cord tissue.Levels of adenovirus IX and Sry mRNA were detected by real-time quantitative polymerase chain reaction and used to determine the number of adenovirus and mesenchymal stem cells that were transfected into the spinal cord.Immunohistochemical staining was applied to detect HIF-1 protein levels in the spinal cord.The results showed that:(1)compared with the other groups,the rhodioloside+Ad-HIF-MSC group exhibited the highest combined behavioral score(P<0.05),the most recovered tissue,and the greatest number of neurons,as indicated by Pischingert’s methylene blue staining.(2)Compared with the PBS group,HIF-1 protein expression was greater in the rhodioloside group(P<0.05).(3)Compared with the Ad-HIF-MSC group,Sry mRNA levels were higher in the rhodioloside+Ad-HIF-MSC group(P<0.05).These results confirm that rhodioloside combined with bone marrow mesenchymal stem cells can promote the recovery of spinal cord injury and activate the HIF-1 pathway to promote the survival of bone marrow mesenchymal stem cells and repair damaged neurons within spinal cord tissue.This experiment was approved by the Animal Ethics Committee of Gansu University of Traditional Chinese Medicine,China(approval No.2015KYLL029)in June 2015. 展开更多
关键词 acute spinal cord injury ADENOVIRUS ADENOVIRUS gene IX bone MARROW mesenchymal stem cells combined behavioral score scale HIF-1α NERVE regeneration NERVE repair RHODIOLA rosea SRY
下载PDF
Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury 被引量:5
13
作者 Shaoqiang Chen Bilian Wu Jianhua Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第19期1445-1453,共9页
Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3 5 bone marrow mesenchymal stem cells were... Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3 5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein. Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1-5 weeks). Expressions of choline acetyltransferase, glutamic acid decarboxytase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation, determined by immunofluorescence staining and laser confocal scanning microscopy. Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase, glutamic acid decarboxylase and synapsins, 3 weeks after transplantation. The Basso-Beattie- Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins. Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats, promote expression of choline acetyltransferase, glutamic acid decarboxylase and synapsins, and improve nerve function in rats with spinal cord injury. 展开更多
关键词 bone marrow mesenchymal stem cells spinal cord injury choline acetyltransferase glutamic aciddecarboxylase SYNAPSINS neural regeneration
下载PDF
Bone Injury and Fracture Healing Biology 被引量:14
14
作者 Ahmad Oryan Somayeh Monazzah Amin Bigham-Sadegh 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2015年第1期57-71,共15页
Bones are organs of the skeletal system, providing shape, mechanical support, and protection to the body and facilitating the movement. In addition, bones contribute to the mineral homeostasis of the body and have rec... Bones are organs of the skeletal system, providing shape, mechanical support, and protection to the body and facilitating the movement. In addition, bones contribute to the mineral homeostasis of the body and have recently been found to participate in endocrine regulation of energy metabolism. The well-known limitations associated with clinical use of autografts and allografts continue to drive efforts to develop bone graft substitutes, using the principles of biomaterials and tissue engineering. Under some stressful and continuous compressive conditions, the ability of the bone tissue to tolerate strength decreases. Whenever these forces overcome the toleration of the bone tissue, bone fracture occurs. years 展开更多
关键词 bone bone injury and Fracture Healing Biology
下载PDF
Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury 被引量:6
15
作者 Fatemeh Anbari Mohammad Ali Khalili +4 位作者 Ahmad Reza Bahrami Arezoo Khoradmehr Fatemeh Sadeghian Farzaneh Fesahat Ali Nabi 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第9期919-923,共5页
To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumat... To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significantly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells. 展开更多
关键词 nerve regeneration bone marrow mesenchymal stem cells traumatic brain injury intravenous administration cell differentiation neurologic function cerebral cortex RATS neural regeneration
下载PDF
Bone marrow mesenchymal stem cells with Nogo-66 receptor gene silencing for repair of spinal cord injury 被引量:5
16
作者 Zhiyuan Li Zhanxiu Zhang +3 位作者 Lili Zhao Hui Li Suxia Wang Yong Shen 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第8期806-814,共9页
We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord trans... We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord transection injury. After 2 weeks, the number of neurons and BrdU-positive cells in the Nogo-66 receptor gene silencing group was higher than in the bone marrow mesenchymal stem cell group, and significantly greater compared with the model group. After 4 weeks, behavioral performance was signiifcantly enhanced in the model group. Af-ter 8 weeks, the number of horseradish peroxidase-labeled nerve ifbers was higher in the Nogo-66 receptor gene silencing group than in the bone marrow mesenchymal stem cell group, and signiifcantly higher than in the model group. The newly formed nerve ifbers and myelinated ner ve ifbers were detectable in the central transverse plane section in the bone marrow mesenchymal stem cell group and in the Nogo-66 receptor gene silencing group. 展开更多
关键词 nerve regeneration spinal cord injury bone marrow mesenchymal stem cells Nogo-66receptor RNA interference horseradish peroxidase BRDU gene silencing neural regeneration
下载PDF
Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury 被引量:4
17
作者 Jindou Jiang Xingyao Bu +1 位作者 Meng Liu Peixun Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第1期46-53,共8页
Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes a... Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury. 展开更多
关键词 ANGIOGENESIS NEUROGENESIS neurotrophic factors bone marrow-derived mesenchymal stem cells traumatic brain injury stem cell transplantation neural regeneration
下载PDF
Combining acellular nerve allografts with brainderived neurotrophic factor transfected bone marrow mesenchymal stem cells restores sciatic nerve injury better than either intervention alone 被引量:6
18
作者 Yanru Zhang Hui Zhang +2 位作者 Gechen Zhang Ka Ka Wenhua Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第20期1814-1819,共6页
In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bo... In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells. Experiments were performed in three groups: the acellular nerve allograft bridging group, acellular nerve allograft + bone marrow mesenchymal stem cells group, and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchyrnal stem cells group. Results showed that at 8 weeks after bridging, sciatic functional index, triceps wet weight recovery rate, myelin thickness, and number of myelinated nerve fibers were significantly changed in the three groups. Variations were the largest in the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells group compared with the other two groups. Experimental findings suggest that chemically extracted acellular nerve allograft combined nerve factor and mesenchymal stem cells can promote the restoration of sciatic nerve defects. The repair effect seen is better than the single application of acellular nerve allograft or acellular nerve allograft combined mesenchymal stem cell transplantation. 展开更多
关键词 nerve regeneration peripheral nerve regeneration peripheral nerve injury chemicallyextracted acellular nerve brain-derived neurotrophic factor bone marrow mesenchymal stem cells nerve tissue engineering neural regeneration
下载PDF
visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury 被引量:4
19
作者 Rui-ping Zhang Cheng Xu +2 位作者 Yin Liu Jian-ding Li Jun Xie 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第3期404-411,共8页
An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord in... An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7_8. Superparamagnet- ic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesen- chymal stem cells reached the lesion site in these rats than in those without magnetic guidance or snperparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guid- ance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury. 展开更多
关键词 nerve regeneration superparamagnetic iron oxide magnetic guidance bone marrowmesenchymal stem cells spinal cord injury cell transplantation magnetic resonance image lumbarpuncture neural regeneration
下载PDF
The future of bone marrow stromal cell transplantation for the treatment of spinal cord injury 被引量:6
20
作者 Mitsuhiro Enomoto 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第3期383-384,共2页
Bone marrow stromal cell (BMSC) transplantation therapy is a promising approach for treating spinal cord injury (SCI), based on a number of experimental and clinical reports (Wright et al., 2011). BMSCs are a so... Bone marrow stromal cell (BMSC) transplantation therapy is a promising approach for treating spinal cord injury (SCI), based on a number of experimental and clinical reports (Wright et al., 2011). BMSCs are a source of neuroregenerative somatic stem cells that are without the potential for tumorigenicity. Although clinical studies of autologous BMSC transplantation have been reported in Asia (fiang et al., 2013; Yoon et al., 2007), in Japan, it is currently an uncommon procedure and highly controversial as well. This perspective paper provides an overview of the clinical effectiveness of BMSC trans- 191antation and a proposal to enhance its use as a viable therapy. 展开更多
关键词 BMSCS The future of bone marrow stromal cell transplantation for the treatment of spinal cord injury SCI bone cell
下载PDF
上一页 1 2 122 下一页 到第
使用帮助 返回顶部