In this work,an amorphous ZnO was coated on LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM)using a sol-gel strategy method.The NCM coated with 1 wt.%Zn O and a thickness of about 3 nm exhibits an improved cycling performance,acc...In this work,an amorphous ZnO was coated on LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM)using a sol-gel strategy method.The NCM coated with 1 wt.%Zn O and a thickness of about 3 nm exhibits an improved cycling performance,accompanied by a lower capacity fading(from 194.8 to 133.8 m Ah g^(-1),i.e.,68%)than that of the pristine one(i.e.,only 34%)after 300 cycles at 0.2 C.The cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS)indicate that the Zn O coating can improve extraction/insertion of Li+and inhibit the increase in impedance of the NCM cathode material.This approach may benefit the performance improvement of the Ni-rich cathode materials in Lithium-ion batteries(LIBs).展开更多
Oxygen anion redox reaction provides a high theoretical capacity for Li-rich manganese-based cathodes.However,irreversible surface oxygen release often results in further oxygen loss and exacerbates the decomposition ...Oxygen anion redox reaction provides a high theoretical capacity for Li-rich manganese-based cathodes.However,irreversible surface oxygen release often results in further oxygen loss and exacerbates the decomposition of the electrolyte,which could reduce the capacity contribution from the anionic redox and produce more acidic substances to corrode the surface of the material.In this paper,the surface oxygen release is suppressed by moderating oxygen anion redox activity via constructing chemical bonds between M(M=Fe and La)in LaFeO_(3)and surface oxygen anions of Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2).The constructed interface layer stabilizes the surface lattice oxygen and retards the electrolyte from being attacked by the nucleophilic oxygen generated in the process of oxygen release,as evidenced by Differential Electrochemical Mass Spectrometry(DEMS)and X-ray Photoelectron Spectroscopy(XPS)detections.Moreover,in the charge and discharge process,the formed FeF_(3),located at the cathode electrolyte interfacial layer,is conducive to the stability of the cathode surface.The modified Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)electrode with 3 wt%LaFeO_(13)exhibits a high specific capacity of 189.5 mA h g-at 1C(200 mA g^(-1))after 150 cycles with capacity retentions of 96.6%,and 112.6 mA h g^(-1)(84.7%)at 5C after 200 cycles higher than the pristine sample.This study provides a rational design chemical bonding method to suppress the oxygen release from the cathode surface and enhance cyclic stability.展开更多
Single crystal LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)is currently widely used due to the outstanding cycle stability and safety.However,its sensitivity to the environment and the high residual alkali makes the electrochemica...Single crystal LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)is currently widely used due to the outstanding cycle stability and safety.However,its sensitivity to the environment and the high residual alkali makes the electrochemical performance and processing property severely degraded after long-term storage,especially for the Ni-rich single crystal material.Therefore,it is highly urgent to develop a cost-effective strategy for the revival of degraded Ni-rich cathode materials.Here,a low-carbon strategy is proposed to revive the degraded single crystal LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(SCNCM622)through water washing.The solid-liquid reaction mechanism of SCNCM622 and water was revealed and the strong dependence of the recovery effect on the washing time was clarified.Under optimized conditions,the sample with a washing time of 24 h shows 31.2%reduction in viscosity,18.4%improvement in discharge capacity,15.3%enhancement in cycle life,and excellent rate performance compared to the blank sample.Therefore,this strategy can achieve higher utilization of single crystal Ni-based cathode materials with a lower cost.展开更多
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2019JLP-04)the National Natural Science Foundation of China(51672189)+1 种基金Xi’an Science and Technology Project of China(201805037YD15CG21(20))Tianjin Science and Technology Project(18PTZWHZ00020)
文摘In this work,an amorphous ZnO was coated on LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM)using a sol-gel strategy method.The NCM coated with 1 wt.%Zn O and a thickness of about 3 nm exhibits an improved cycling performance,accompanied by a lower capacity fading(from 194.8 to 133.8 m Ah g^(-1),i.e.,68%)than that of the pristine one(i.e.,only 34%)after 300 cycles at 0.2 C.The cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS)indicate that the Zn O coating can improve extraction/insertion of Li+and inhibit the increase in impedance of the NCM cathode material.This approach may benefit the performance improvement of the Ni-rich cathode materials in Lithium-ion batteries(LIBs).
基金supported by the National Natural Science Foundation of China(22175070,22293041,51902081,and 21871106)Key Fund in Hebei Province Department of Education China(ZD2022042)。
文摘Oxygen anion redox reaction provides a high theoretical capacity for Li-rich manganese-based cathodes.However,irreversible surface oxygen release often results in further oxygen loss and exacerbates the decomposition of the electrolyte,which could reduce the capacity contribution from the anionic redox and produce more acidic substances to corrode the surface of the material.In this paper,the surface oxygen release is suppressed by moderating oxygen anion redox activity via constructing chemical bonds between M(M=Fe and La)in LaFeO_(3)and surface oxygen anions of Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2).The constructed interface layer stabilizes the surface lattice oxygen and retards the electrolyte from being attacked by the nucleophilic oxygen generated in the process of oxygen release,as evidenced by Differential Electrochemical Mass Spectrometry(DEMS)and X-ray Photoelectron Spectroscopy(XPS)detections.Moreover,in the charge and discharge process,the formed FeF_(3),located at the cathode electrolyte interfacial layer,is conducive to the stability of the cathode surface.The modified Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)electrode with 3 wt%LaFeO_(13)exhibits a high specific capacity of 189.5 mA h g-at 1C(200 mA g^(-1))after 150 cycles with capacity retentions of 96.6%,and 112.6 mA h g^(-1)(84.7%)at 5C after 200 cycles higher than the pristine sample.This study provides a rational design chemical bonding method to suppress the oxygen release from the cathode surface and enhance cyclic stability.
基金financially supported by the Science,Technology,and Innovation Commission of Shenzhen Municipality(No.JCYJ20180508151856806)the National Natural Science Foundation of China(No.51974256)+3 种基金the Outstanding Young Scholars of Shaanxi(No.2019JC-12)the Key R&D Program of Shanxi(No.2019ZDLGY04-05)the National Natural Science Foundation of Shaanxi(Nos.2019JLZ-01,2019JLM-29)the Fundamental Research Funds for the Central Universities(Nos.19GH020302,3102019JC005)。
文摘Single crystal LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)is currently widely used due to the outstanding cycle stability and safety.However,its sensitivity to the environment and the high residual alkali makes the electrochemical performance and processing property severely degraded after long-term storage,especially for the Ni-rich single crystal material.Therefore,it is highly urgent to develop a cost-effective strategy for the revival of degraded Ni-rich cathode materials.Here,a low-carbon strategy is proposed to revive the degraded single crystal LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(SCNCM622)through water washing.The solid-liquid reaction mechanism of SCNCM622 and water was revealed and the strong dependence of the recovery effect on the washing time was clarified.Under optimized conditions,the sample with a washing time of 24 h shows 31.2%reduction in viscosity,18.4%improvement in discharge capacity,15.3%enhancement in cycle life,and excellent rate performance compared to the blank sample.Therefore,this strategy can achieve higher utilization of single crystal Ni-based cathode materials with a lower cost.