Lithium-ion battery cathode material Li3V2(PO4)3 was synthesized by sol-gel method using LiOH·H2O, NH4VO3, H3PO4 and citric acid as the raw materials. The samples were investigated by granularity analysis, scanni...Lithium-ion battery cathode material Li3V2(PO4)3 was synthesized by sol-gel method using LiOH·H2O, NH4VO3, H3PO4 and citric acid as the raw materials. The samples were investigated by granularity analysis, scanning electron microscopy and X-ray diffraction. Results showed that sample synthesized by sol-gel procedure had a relatively smaller particle size compared with the products prepared by solid-state reaction, and had an ample surface. Electrochemical properties were investigated by charge/discharge cycle at 0.1 C rate with lithium as the anode. A high discharge specific capacity 122.42 mAh·g-1 was reached at the first cycle, with hardly capacity fading after 20 cycles.展开更多
文摘为了制备锂离子电池正极材料球形LiFePO4,以曲拉通-100(Tx-100)作表面活性剂,用超声波法制备了LiFePO4的前驱体材料μm级球形Li3PO4粉末,并用X射线衍射进行了表征.研究了各种因素对Li3PO4颗粒形态的影响,得到了超声波法制备球形Li3PO4粉末的适宜条件:反应温度为35℃,Li+的浓度为0.6 mol/L,Tx-100的质量百分数为10%,超声波作用时间为5 min.
文摘Lithium-ion battery cathode material Li3V2(PO4)3 was synthesized by sol-gel method using LiOH·H2O, NH4VO3, H3PO4 and citric acid as the raw materials. The samples were investigated by granularity analysis, scanning electron microscopy and X-ray diffraction. Results showed that sample synthesized by sol-gel procedure had a relatively smaller particle size compared with the products prepared by solid-state reaction, and had an ample surface. Electrochemical properties were investigated by charge/discharge cycle at 0.1 C rate with lithium as the anode. A high discharge specific capacity 122.42 mAh·g-1 was reached at the first cycle, with hardly capacity fading after 20 cycles.