A novel transparent and soft quasi-solid-state electrolyte (QSSE) was proposed and fabricated, which consists of ionic liquid (PYR14TFSI) and nano-fumed silica. The QSSE demonstrates high ionic conductivity of 4.6...A novel transparent and soft quasi-solid-state electrolyte (QSSE) was proposed and fabricated, which consists of ionic liquid (PYR14TFSI) and nano-fumed silica. The QSSE demonstrates high ionic conductivity of 4.6× 10-4 S/cm at room temperature and wide electrochemical stability window of over 5 V. The Li-O2 battery using such quasi-solidstate electrolyte exhibits a low charge-discharge overpotential at the first cycle and excellent long-term cyclability over 500 cycles.展开更多
In <span style="font-family:;" "="">the </span><span style="font-family:;" "="">framework of the variational Monte Carlo method, the ground states of...In <span style="font-family:;" "="">the </span><span style="font-family:;" "="">framework of the variational Monte Carlo method, the ground states of the lithium atom and l</span><span style="font-family:;" "="">ithium like ions up to <i>Z</i> = 10 in an external strong magnetic field are evaluated. Furthermore, the two low-lying excited states <img src="Edit_d92f9e9d-e574-4fa3-91fb-a153db020509.png" alt="" /></span><span style="font-family:;" "="">, <span style="font-size:10.0pt;font-family:;" "=""><span></span></span><span style="font-size:10.0pt;font-family:;" "=""><span></span></span><span style="font-size:10.0pt;font-family:;" "=""><span></span></span><span style="font-size:10.0pt;font-family:;" "=""><span></span></span><span style="font-size:10.0pt;font-family:;" "=""><span></span></span><img src="" alt="" /> <img src="Edit_5bf0039b-89f7-4346-a3cb-178f5df359cf.png" width="0" height="0" alt="" /><img src="" alt="" /><img src="Edit_41f9b122-3fdc-4f01-9470-542944413516.png" alt="" /></span><span style="font-family:;" "="">and <img src="" alt="" /><span></span></span><span style="font-family:;" "=""><span> <img src="Edit_79f5e8c8-0b24-4dfd-8b9e-080183cc967f.png" alt="" /></span>of the lithium atom in strong magnetic field are also investigated</span><span style="font-family:;" "="">. </span><span style="font-family:;" "="">Simple trial wave functions for lithium are used.</span>展开更多
The high Li-ion conductivity of the Li7P3S11 sulfide-based solid electrolyte makes it a promising candidate for all-solid-state lithium batteries. The Li-ion transport over electrode-electrolyte and electrolyteelectro...The high Li-ion conductivity of the Li7P3S11 sulfide-based solid electrolyte makes it a promising candidate for all-solid-state lithium batteries. The Li-ion transport over electrode-electrolyte and electrolyteelectrolyte interfaces, vital for the performance of solid-state batteries, is investigated by impedance spectroscopy and solid-state NMR experiments. An all-solid-state Li-ion battery is assembled with the Li7P3S11 electrolyte, nano-Li2S cathode and Li-In foil anode, showing a relatively large initial discharge capacity of 1139.5 m Ah/g at a current density of 0.064 m A/cm^ 2 retaining 850.0 m Ah/g after 30 cycles. Electrochemical impedance spectroscopy suggests that the decrease in capacity over cycling is due to the increased interfacial resistance between the electrode and the electrolyte. 1D exchange ^7Li NMR quantifies the interfacial Li-ion transport between the uncycled electrode and the electrolyte, resulting in a diffusion coefficient of 1.70(3) ×10^-14cm^2/s at 333 K and an energy barrier of 0.132 e V for the Li-ion transport between Li2S cathode and Li7P3S11 electrolyte. This indicates that the barrier for Li-ion transport over the electrode-electrolyte interface is small. However, the small diffusion coefficient for Li-ion diffusion between the Li2S and the Li7P3S11 suggests that these contact interfaces between electrode and electrolyte are relatively scarce, challenging the performance of these solid-state batteries.展开更多
基金Project supported by the National Key R&D Program of China(Grant Nos.2016YFB0100300 and 2016YFB0100100)the National Basic Research Program of China(Grant No.2014CB932300)+2 种基金the Beijing Municipal Science&Technology Commission,China(Grant No.D171100005517001)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09010000)the National Natural Science Foundation of China(Grant No.51502334)
文摘A novel transparent and soft quasi-solid-state electrolyte (QSSE) was proposed and fabricated, which consists of ionic liquid (PYR14TFSI) and nano-fumed silica. The QSSE demonstrates high ionic conductivity of 4.6× 10-4 S/cm at room temperature and wide electrochemical stability window of over 5 V. The Li-O2 battery using such quasi-solidstate electrolyte exhibits a low charge-discharge overpotential at the first cycle and excellent long-term cyclability over 500 cycles.
文摘In <span style="font-family:;" "="">the </span><span style="font-family:;" "="">framework of the variational Monte Carlo method, the ground states of the lithium atom and l</span><span style="font-family:;" "="">ithium like ions up to <i>Z</i> = 10 in an external strong magnetic field are evaluated. Furthermore, the two low-lying excited states <img src="Edit_d92f9e9d-e574-4fa3-91fb-a153db020509.png" alt="" /></span><span style="font-family:;" "="">, <span style="font-size:10.0pt;font-family:;" "=""><span></span></span><span style="font-size:10.0pt;font-family:;" "=""><span></span></span><span style="font-size:10.0pt;font-family:;" "=""><span></span></span><span style="font-size:10.0pt;font-family:;" "=""><span></span></span><span style="font-size:10.0pt;font-family:;" "=""><span></span></span><img src="" alt="" /> <img src="Edit_5bf0039b-89f7-4346-a3cb-178f5df359cf.png" width="0" height="0" alt="" /><img src="" alt="" /><img src="Edit_41f9b122-3fdc-4f01-9470-542944413516.png" alt="" /></span><span style="font-family:;" "="">and <img src="" alt="" /><span></span></span><span style="font-family:;" "=""><span> <img src="Edit_79f5e8c8-0b24-4dfd-8b9e-080183cc967f.png" alt="" /></span>of the lithium atom in strong magnetic field are also investigated</span><span style="font-family:;" "="">. </span><span style="font-family:;" "="">Simple trial wave functions for lithium are used.</span>
基金funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no.[307161] of M.W.
文摘The high Li-ion conductivity of the Li7P3S11 sulfide-based solid electrolyte makes it a promising candidate for all-solid-state lithium batteries. The Li-ion transport over electrode-electrolyte and electrolyteelectrolyte interfaces, vital for the performance of solid-state batteries, is investigated by impedance spectroscopy and solid-state NMR experiments. An all-solid-state Li-ion battery is assembled with the Li7P3S11 electrolyte, nano-Li2S cathode and Li-In foil anode, showing a relatively large initial discharge capacity of 1139.5 m Ah/g at a current density of 0.064 m A/cm^ 2 retaining 850.0 m Ah/g after 30 cycles. Electrochemical impedance spectroscopy suggests that the decrease in capacity over cycling is due to the increased interfacial resistance between the electrode and the electrolyte. 1D exchange ^7Li NMR quantifies the interfacial Li-ion transport between the uncycled electrode and the electrolyte, resulting in a diffusion coefficient of 1.70(3) ×10^-14cm^2/s at 333 K and an energy barrier of 0.132 e V for the Li-ion transport between Li2S cathode and Li7P3S11 electrolyte. This indicates that the barrier for Li-ion transport over the electrode-electrolyte interface is small. However, the small diffusion coefficient for Li-ion diffusion between the Li2S and the Li7P3S11 suggests that these contact interfaces between electrode and electrolyte are relatively scarce, challenging the performance of these solid-state batteries.