Fluorinated carbons(CF_(x))/Li primary batteries with high theoretical energy density have been applied as indispensable energy storage devices with no need for rechargeability,yet plagued by poor rate capability and ...Fluorinated carbons(CF_(x))/Li primary batteries with high theoretical energy density have been applied as indispensable energy storage devices with no need for rechargeability,yet plagued by poor rate capability and narrow temperature adaptability in actual scenarios.Herein,benefiting from precise solvation engineering for synergistic coordination of anions and low-affinity solvents,the optimized cyclic ether-based electrolyte is elaborated to significantly facilitate overall reaction dynamics closely correlated to lower desolvation barrier.As a result,the excellent rate(15 C,650 mAh g^(-1))at room-temperature and ultra-lowtemperature performance dropping to-80°C(495 mAh g^(-1)at average output voltage of 2.11 V)is delivered by the end of 1.5 V cut-off voltage,far superior to other organic liquid electrolytes.Furthermore,the CF_(x)/Li cell employing the high-loading electrode(18-22 mg cm^(-2))still yields 1,683 and 1,395 Wh kg^(-1)in the case of-40°C and-60°C,respectively.In short,the novel design strategy for cyclic ethers as basic solvents is proposed to enable the CF_(x)/Li battery with superb subzero performances,which shows great potential in practical application for extreme environments.展开更多
基金Project(2018RS3091) supported by the Hunan Innovation Team,ChinaProjects(52202308, 12105097) supported by the National Natural Science Foundation of ChinaProject(2021RC2092) supported by the Science and Technology Innovation Program of Hunan Province,China。
基金financially supported from the Natural Science Foundation of Jilin Province(20220508141RC)
文摘Fluorinated carbons(CF_(x))/Li primary batteries with high theoretical energy density have been applied as indispensable energy storage devices with no need for rechargeability,yet plagued by poor rate capability and narrow temperature adaptability in actual scenarios.Herein,benefiting from precise solvation engineering for synergistic coordination of anions and low-affinity solvents,the optimized cyclic ether-based electrolyte is elaborated to significantly facilitate overall reaction dynamics closely correlated to lower desolvation barrier.As a result,the excellent rate(15 C,650 mAh g^(-1))at room-temperature and ultra-lowtemperature performance dropping to-80°C(495 mAh g^(-1)at average output voltage of 2.11 V)is delivered by the end of 1.5 V cut-off voltage,far superior to other organic liquid electrolytes.Furthermore,the CF_(x)/Li cell employing the high-loading electrode(18-22 mg cm^(-2))still yields 1,683 and 1,395 Wh kg^(-1)in the case of-40°C and-60°C,respectively.In short,the novel design strategy for cyclic ethers as basic solvents is proposed to enable the CF_(x)/Li battery with superb subzero performances,which shows great potential in practical application for extreme environments.