期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Sandwich-type composited solid polymer electrolytes to strengthen the interfacial ionic transportation and bulk conductivity for all-solid-state lithium batteries from room temperature to 120℃
1
作者 Jiewen Tan Zhen Wang +7 位作者 Jiawu Cui Zhanhui Jia Wensheng Tian Chao Wu Chengxin Peng Chengyong Shu Kang Yang Wei Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期288-295,I0007,共9页
The insurmountable charge transfer impedance at the Li metal/solid polymer electrolytes(SPEs)interface at room temperature as well as the ascending risk of short circuits at the operating temperature higher than the m... The insurmountable charge transfer impedance at the Li metal/solid polymer electrolytes(SPEs)interface at room temperature as well as the ascending risk of short circuits at the operating temperature higher than the melting point,dominantly limits their applications in solid-state batteries(SSBs).Although the inorganic filler such as CeO_(2)nanoparticle content of composite solid polymer electrolytes(CSPEs)can significantly reduce the enormous charge transfer impedance at the Li metal/SPEs interface,we found that the required content of CeO_(2)nanoparticles in SPEs varies for achieving a decent interfacial charge transfer impedance and the bulk ionic conductivity in CSPEs.In this regard,a sandwich-type composited solid polymer electrolyte with a 10%CeO_(2)CSPEs interlayer sandwiched between two 50%CeO_(2)CSPEs thin layers(sandwiched CSPEs)is constructed to simultaneously achieve low charge transfer impedance and superior ionic conductivity at 30℃.The sandwiched CSPEs allow for stable cycling of Li plating and stripping for 1000 h with 129 mV polarized voltage at 0.1 mA cm^(-2)and 30℃.In addition,the LiFePO_(4)/Sandwiched CSPEs/Li cell also exhibits exceptional cycle performance at 30℃and even elevated120℃without short circuits.Constructing multi-layered CSPEs with optimized contents of the inorganic fillers can be an efficient method for developing all solid-state PEO-based batteries with high performance at a wide range of temperatures. 展开更多
关键词 PEO-based solid electrolytes CeO_(2)nanoparticles Charge transfer impedance Sandwich-type composite electrolytes All-solid-state li metal batteries
下载PDF
Synthesis and electrochemical performance of (100-x)Li7P3S11-xLi2OHBr composite solid electrolyte for all-solid-state lithium batteries 被引量:4
2
作者 Su-Yeon Jung Rajesh Rajagopal Kwang-Sun Ryu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期307-316,I0011,共11页
Li7P3S11solid electrolytes with high lithium-ion conductivity are promising candidates for use in all-solidstate lithium batteries.However,this electrolyte’s poor interfacial compatibility with lithium electrodes cau... Li7P3S11solid electrolytes with high lithium-ion conductivity are promising candidates for use in all-solidstate lithium batteries.However,this electrolyte’s poor interfacial compatibility with lithium electrodes causes unstable cyclability.In this study,in order to address this problem,(100-x)Li7P3S11-xLi2OHBr(x=0,2,5,10,20,30,40,and 50)electrolytes are prepared by a high energy ball-milling technique and heat-treatment process.The resulting(100-x)Li7P3S11-xLi2OHBr(x=2,5,10,20,30,40,and 50)electrolytes provide improved electrochemical performance with good cycling stability and a wide electrochemical window of up to 10 V(vs.Li/Li+).Moreover,these electrolytes have high ionic conductivity of 10-4–10-5S/cm at room temperature.Particularly,the 90Li7P3S11-10Li2OHBr electrolyte displays the highest conductivity of 4.4×10-4S/cm at room temperature as well as improved cyclability.Moreover,90Li7P3S11-10Li2OHBr shows decreased interfacial resistance between the solid electrolyte and cathode electrode,which was revealed by Electrochemical Impedance Spectroscopy(EIS)analysis.The initial discharge capacity of 90Li7P3S11-10Li2OHBr was found to be 135 m Ah/g when used in a In|solid electrolyte|Li(Ni0.6Co0.2Mn0.2)O2 all-solid-state lithium battery(ASSLB).Thus,we can conclude the addition of Li2OHBr into the Li7P3S11results in enhanced electrochemical properties. 展开更多
关键词 All-solid-state lithium battery Solid electrolyte Solid sulfide electrolyte li2OHBr ANTIPEROVSKITE
下载PDF
Hybrid polymer electrolyte for Li–O_2 batteries 被引量:1
3
作者 Bojie Li Yijie Liu +2 位作者 Xiaoyu Zhang Ping He Haoshen Zhou 《Green Energy & Environment》 SCIE CSCD 2019年第1期3-19,共17页
Li–O_2 batteries have attracted much attention because of their high specific energy. However, safety problem generated mainly from the flammable organic liquid electrolytes have hindered the commercial use of Li–O_... Li–O_2 batteries have attracted much attention because of their high specific energy. However, safety problem generated mainly from the flammable organic liquid electrolytes have hindered the commercial use of Li–O_2 batteries. One of the competitive alternatives is polymer electrolytes due to their flexibility and non-flammable property. Moreover, the hybrid polymer electrolyte with enhanced electrochemical properties would be achieved by incorporating inorganic filler, liquid plasticizer and redox mediator into the polymer. While most researches of the hybrid polymer electrolyte focused on Li-ion batteries, few of them took account into its application in Li–O_2 batteries. In this review, we mainly discuss hybrid polymer electrolytes for Li–O_2 batteries with different composition. The critical issues including conductivity and stability of electrolytes are also discussed in detail. Our review provides some insights of hybrid polymer electrolytes for Li–O_2 batteries and offers necessary guidelines for designing the suitable hybrid polymer electrolyte for Li–O_2 batteries as well. 展开更多
关键词 li–O2 battery Hybrid polymer electrolyte INORGANIC FILLER liquid PLASTICIZER Redox MEDIATOR
下载PDF
Synergistic enhancement of cathode/anode interfaces with high water-retentive organohydrogel enabling highly stable zinc ion batteries
4
作者 Xixi Zhang Qingxiu Yu +8 位作者 Guangmeng Qu Xiaoke Wang Chuanlin Li Chenggang Wang Na Li Jinzhao Huang Cuiping Han Hongfei Li Xijin Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期670-679,共10页
Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased intern... Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased internal resistance,ultimately resulting in battery failure.Herein,a double network(DN) orga no hydrogel electrolyte based on dimethyl sulfoxide(DMSO)/H_(2)O binary solvent was proposed.Through directionally reconstructing hydrogen bonds and reducing active H_(2)O molecules,the water retention ability and cathode/anode interfaces were synergistic enhanced.As a result,the synthesized DN organohydrogel demonstrates exceptional water retention capabilities,retaining approximately 75% of its original weight even after the exposure to air for 20 days.The Zn MnO_(2) battery delivers an outstanding specific capacity of275 mA h g^(-1) at 1 C,impressive rate performance with 85 mA h g^(-1) at 30 C,and excellent cyclic stability(95% retention after 6000 cycles at 5 C).Zn‖Zn symmetric battery can cycle more than 5000 h at 1 mA cm^(-2) and 1 mA h cm^(-2) without short circuiting.This study will encourage the further development of functional organohydrogel electrolytes for advanced energy storage devices. 展开更多
关键词 Enhanced water-retentive Organohydrogel electrolyte Stable Zn||mno+2 batteries Enhancement of cathode/anode interfaces
下载PDF
Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte
5
作者 Yu-Qin Mao Guang-He Dong +3 位作者 Wei-Bin Zhu Yuan-Qing Li Pei Huang Shao-Yun Fu 《Nano Materials Science》 EI CAS CSCD 2024年第1期60-67,共8页
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa... Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries. 展开更多
关键词 Solid polymer electrolyte Ti_(3)C_(2)T_(x)MXene Poly(ethylene oxide) Glass fiber cloth All-solid-state li metal battery
下载PDF
ZnS coating of cathode facilitates lean‐electrolyte Li‐S batteries 被引量:6
6
作者 Woochul Shin Jun Lu Xiulei Ji 《Carbon Energy》 CAS 2019年第2期165-172,共8页
Tremendous effort has been devoted to lithium‐sulfur batteries,where flooded electrolytes have been employed ubiquitously.The use of lean electrolytes albeit indispensable for practical applications often causes low ... Tremendous effort has been devoted to lithium‐sulfur batteries,where flooded electrolytes have been employed ubiquitously.The use of lean electrolytes albeit indispensable for practical applications often causes low capacity and fast capacity fading of the sulfur cathode;thus,the electrolyte/sulfur active mass ratios below 5μL/mg have been rarely reported.Herein,we demonstrate that ZnS coating transforms sulfur cathode materials electrolyte‐philic,which tremendously promotes the performance in lean electrolytes.The ZnS‐coated Li2S@graphene cathode delivers an initial discharge capacity of 944mAh/g at an E/S ratio of 2μL/mg at the active mass loading of 5.0 mg Li2S/cm^2,corresponding to an impressive specific energy of 500Wh/kg based on the mass of cathode,electrolyte,and the assumed minimal mass of lithium metal anode.Density functional theory calculations reveal strong binding between ZnS crystals and electrolyte solvent molecules,explaining the better wetting properties.We also demonstrate the reversible cycling of a hybrid cathode of ZnS‐coated Li2S@graphene mixed with VS2 as an additive at an E/AM(active mass)ratio of 1.1μL/mg,equivalent to the specific energy of 432 Wh/kg on the basis of the mass of electrodes and electrolyte. 展开更多
关键词 electrolyte‐philic lean electrolyte li2S cathode lithium‐sulfur battery ZnS coating
下载PDF
Synthesis and Characterization of a Novel Polymer Electrolyte for Lithium-ion Battery
7
作者 YanPingLiang HongZhuMA BoWANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第2期234-237,共4页
A novel polymer electrolyte with the formula of Li2B4O7-PVA for lithium-ion battery was synthesized and its ion conductivity and mechanical properties were also tested. It is found that the conductivity of the prepare... A novel polymer electrolyte with the formula of Li2B4O7-PVA for lithium-ion battery was synthesized and its ion conductivity and mechanical properties were also tested. It is found that the conductivity of the prepared polymer electrolytes is higher than that of LiClO4/PEO or LiClO4/EC-DMC by two or three orders in magnitude and a large delocalized bond formed in Li2B4O7-PVA lead to transportation of Li ion easier, this electrolyte possesses high thermo-stability and can be used under 200C. 展开更多
关键词 CONDUCTIVITY lithium-ion battery polymer electrolyte li2B4O7-PVA.
下载PDF
LATP-coated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)cathode with compatible interface with ultrathin PVDF-reinforced PEO-LLZTO electrolyte for stable solid-state lithium batteries
8
作者 Xiao Chen Yinda Li +6 位作者 Yunhao Lu Jian Xie Cheng Huang Xiongwen Xu Jian Tu Xinbing Zhao Tiejun Zhu 《Journal of Materiomics》 SCIE CSCD 2024年第3期682-693,共12页
LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)is considered as a promising cathode for high-energy-density solid-sate Li metal battery for its high theoretical capacity.However,the high oxidizability and structural instabili... LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)is considered as a promising cathode for high-energy-density solid-sate Li metal battery for its high theoretical capacity.However,the high oxidizability and structural instability during charge limit its practical applications.In this work,1%(in mass)of nanosized Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)was coated on NCM811 to enhance its electrochemical stability with a ceramic/polymer com-posite electrolyte.A robust,ultrathin(11 mm)composite electrolyte film was prepared by combining poly(vinylidene fluoride)(PVDF)with polyethylene oxide(PEO)-Li_(6.5)La_(3)Zr_(1.5)Ta_(0.5)O_(12)(LLZTO).An in-situ polymerization process was used to enhance the interface between the PVDF/PEO-LLZTO(PPL)com-posite electrolyte and the LATP-coated NCM811(LATP-NCM811).Coin-type Li|LATP-NCM811 cell with the PPL electrolyte exhibits stable cycling with an 81%capacity retention after 100 cycles at 0.5 C.Pouch-type cell was also fabricated,which can be stably cycled for 70 cycles at 0.5 C/1.0 C(80%retention),and withstand abuse tests of bending,cutting and nail penetration.This work provides an applicable method to fabricate solid-state Li metal batteries with high performance. 展开更多
关键词 Ultrathin electrolyte film liNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)coating In-situ polymerization li metal battery
原文传递
提高Li/MnO_2扣式电池质量的研究 被引量:5
9
作者 余世英 房艳 《盐湖研究》 CSCD 1999年第4期68-72,共5页
探索了提高MnO2 电化学活性的方法,正极材料和电解液的配比和用量,以及工艺过程中应注意的问题。
关键词 正极材料 二氧化锰 扣式电池 质量 锂电池 电池
下载PDF
Dual-Functional Organotelluride Additive for Highly Efficient Sulfur Redox Kinetics and Lithium Regulation in Lithium–Sulfur Batteries 被引量:2
10
作者 Wei Zhang Fenfen Ma +5 位作者 Qiang Wu Ziqi Zeng Wei Zhong Shijie Cheng Xin Chen Jia Xie 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期126-133,共8页
High energy density and low cost made lithium–sulfur(Li–S)batteries appealing for the next-generation energy storage devices.However,their commercial viability is seriously challenged by serious polysulfide shuttle ... High energy density and low cost made lithium–sulfur(Li–S)batteries appealing for the next-generation energy storage devices.However,their commercial viability is seriously challenged by serious polysulfide shuttle effect,sluggish sulfur kinetics,and uncontrollable dendritic Li growth.Herein,a dual-functional electrolyte additive,diphenyl ditelluride(DPDTe)is reported for Li–S battery.For sulfur cathodes,DPDTe works as a redox mediator to accelerate redox kinetics of sulfur,in which Te radical-mediated catalytic cycle at the solid–liquid interface contributes significantly to the whole process.For lithium anodes,DPDTe can react with lithium metal to form a smooth and stable organic–inorganic hybrid solid-electrolyte interphase(SEI),enabling homogeneous lithium deposition for suppressing dendrite growth.Consequently,the Li–S battery with DPDTe exhibits remarkable cycling stability and superb rate capability,with a high capacity up to 1227.3 mAh g^(-1)and stable cycling over 300 cycles.Moreover,a Li–S pouch cell with DPDTe is evaluated as the proof of concept.This work demonstrates that organotelluride compounds can be used as functional electrolyte additives and offers new insights and opportunities for practical Li–S batteries. 展开更多
关键词 electrolyte additive li anode li2 S deposition li–S battery sulfur kinetics
下载PDF
Li/MnO_2电池电解液阻燃剂的研究
11
作者 魏婷如 高军 +2 位作者 汪红萍 曾维熙 杨勇 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第A02期220-223,共4页
为了降低Li/MnO2电池电解液的可燃性、提高电池的使用安全性,本文研究了以DMMP(Dimethyl methylphospho-nate,甲基膦酸二甲酯)和TCEP(Tri(2-chloroethyl)phosphate,磷酸三(2-氯乙基)酯)作为阻燃添加剂,LiClO4为电解质盐的新型电解液,分... 为了降低Li/MnO2电池电解液的可燃性、提高电池的使用安全性,本文研究了以DMMP(Dimethyl methylphospho-nate,甲基膦酸二甲酯)和TCEP(Tri(2-chloroethyl)phosphate,磷酸三(2-氯乙基)酯)作为阻燃添加剂,LiClO4为电解质盐的新型电解液,分别比较了添加DMMP和TCEP对电解液阻燃性、电池交流阻抗和放电性能的影响. 展开更多
关键词 li/mno2电池 电解液 阻燃剂 DMMP TCEP
下载PDF
Polymer electrolytes reinforced by 2D fluorinated filler for all-solidstate Li-Fe-F conversion-type lithium metal batteries 被引量:3
12
作者 Meng Lei Xiaoxue Wu +3 位作者 Yangyang Liu Keyi Chen Jiulin Hu Chilin Li 《Nano Research》 SCIE EI CSCD 2023年第6期8469-8477,共9页
The polyethylene oxide(PEO)based solid-state batteries are considered as promising candidates for the next-generation Li metal batteries with high energy density and safety.However,the low Li-ion conductivity and high... The polyethylene oxide(PEO)based solid-state batteries are considered as promising candidates for the next-generation Li metal batteries with high energy density and safety.However,the low Li-ion conductivity and high-voltage endurability hinder the further applications of PEO-based electrolytes.To overcome these issues,herein two-dimensional(2D)CeF_(3)nanoplates with maximally exposed[001]crystal faces are introduced into the PEO matrix to expand the electrochemical window and improve Liion conduction and transport.The optimized crystal shape and crystal face anisotropy of CeF_(3)nanoplate filler reduce the crystallinity of composite solid polymer electrolyte(CSPE)via its Lewis acid-base interaction with ether oxygen of PEO.The Liaffinity[100]and Li-repellent[001]crystal faces of CeF_(3)nanoplates synergistically realize the dissociation of lithium bis(trifluoromethanesulfonyl)imide(LiTFSI),fast Li-adsorption/desorption,and Li+migration.The optimized CSPE-0.1CeF_(3)membrane enables the achievement of Li metal batteries with high endurability and stability,from the kinetically favorable Li/Li symmetric cells with long-term cycling over 8000 h.The highly reversible Li/LiFePO_(4) cells exhibit a capacity retention of 109.2 mAh·g^(−1)after 1000 cycles at 1 C,corresponding to a low capacity fading rate of 0.026%per cycle.The conversion-type allsolid-state Li/CSPE-0.1CeF_(3)/FeF_(3)cells show a high reversible capacity of 201.9 mAh·g^(−1)after long-term 600 cycles and of 231.1 mAh·g^(−1)at an ultra-high rate of 5 C. 展开更多
关键词 Polymer electrolytes 2D fluoride filler solid-state batteries li-Fe-F conversion cathodes li metal anodes
原文传递
锂离子电池阴极材料Li_(1+x)Mn_2O_4的水热合成及表征 被引量:18
13
作者 刘兴泉 李庆 于作龙 《合成化学》 CAS CSCD 1999年第4期382-388,共7页
以化学MnO2(CMD)为Mn源,LiNO3和LiOH·H2O分别为Li源,采用无机水热合成法合成了锂离子二次电池的阴极材料Li1+xMn2O4(0≤x<1),并采用XRD,BET,TEM,TGA和电化学测试等手段对材料进行了表征。结果表明,在240℃水热晶化72h所得样品... 以化学MnO2(CMD)为Mn源,LiNO3和LiOH·H2O分别为Li源,采用无机水热合成法合成了锂离子二次电池的阴极材料Li1+xMn2O4(0≤x<1),并采用XRD,BET,TEM,TGA和电化学测试等手段对材料进行了表征。结果表明,在240℃水热晶化72h所得样品为棕红色,主要以γ-Mn2O3和层状LiMnO2形式存在。当Li/Mn摩尔比为1∶1时,其首次充电比容量达到205.35mAh/g,首次放电比容量达到178.80mAh/g。样品经650℃空气中焙烧6h后转变成以Li1+xMn2O4尖晶石型形式存在,其首次放电比容量下降到110mAh/g~120mAh/g。 展开更多
关键词 水热合成 锂离子电池 阴极材料 尖晶石
下载PDF
Zn/MnO_2电池的电解质溶液
14
作者 宋文顺 《电池》 CAS CSCD 北大核心 2002年第2期121-122,共2页
对Zn/MnO2 电池所用电解质溶液的发展及其导电性、杂质与净化和添加剂进行了讨论 ,并指出电池的放电特征主要取决于电解质的性质 ,建议对电池的放电特点加强宣传。
关键词 Zn/mno2电池 电解质溶液 放电特点 锌锰电池
下载PDF
锂离子电池富锂正极材料Li[Li_(0.2)Ni_(0.16)Mn_(0.56)Co_(0.06)Al_(0.02)]O_2的合成和电化学性能 被引量:4
15
作者 叶艳艳 张海朗 《化工新型材料》 CAS CSCD 北大核心 2013年第1期45-47,共3页
用溶胶-凝胶法首次合成了富锂正极材料Li[Li0.2Ni0.16Mn0.56Co0.06Al0.02]O2,它可以看成是Li[Li1/3Mn2/3]O2和LiNi0.4Mn0.4Co0.15Al0.05O2形成的固溶体。XRD测试表明该材料具有ɑ-NaFeO2层状结构,用SEM观察材料粒径为100nm左右。充放电... 用溶胶-凝胶法首次合成了富锂正极材料Li[Li0.2Ni0.16Mn0.56Co0.06Al0.02]O2,它可以看成是Li[Li1/3Mn2/3]O2和LiNi0.4Mn0.4Co0.15Al0.05O2形成的固溶体。XRD测试表明该材料具有ɑ-NaFeO2层状结构,用SEM观察材料粒径为100nm左右。充放电测试得到,材料在2~4.8V范围内,0.1C的电流下,20℃时,首次放电比容量达221.8mAh/g,库伦效率为85.3%;55℃时,首次放电比容量达281.7mAh/g,库伦效率为93.0%;且该材料具有很好的循环稳定性及优良的倍率性能。通过循环伏安测试分析了该材料的充放电机理。 展开更多
关键词 锂离子电池 li[li0 2Ni0 16Mn0 56Co0 06Al0 02]O2 层状结构 电化学性能
下载PDF
Evaluation of Al and Some of Its Alloys as Anode Materials vs γ-MnO_2 as Cathode Material and Ore Produced γ-MnO_2 vs Zn Anode in KOH Solution 被引量:1
16
作者 A.M.A.Hashem Kh.S.Abou-El-Sherbini +1 位作者 S.Zein El Abedin H.Abbas 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第1期25-30,共6页
In this study electrochemical performance of Al and some of its alloys (Al-Zn, Al-rvlg and Al-rvln) anodes vs MnO2 cathode were carried out in alkaline solution. The results show that the Al-Zn alloy anode has the b... In this study electrochemical performance of Al and some of its alloys (Al-Zn, Al-rvlg and Al-rvln) anodes vs MnO2 cathode were carried out in alkaline solution. The results show that the Al-Zn alloy anode has the best cell capacity among the other alloys. Cell capacity values go in the order Al-Zn〉Al-Mg〉Al〉Al-Mn. This result is probably related to the nature of passive films formed on the surface of the alloys which examined by scanning electron microscopy (SEM). SEM morphologies of Al and its alloys showed coarse grains of passive films formed on the surface of these anode materials while Al-Mn morphology shows a needle-like structure. Electrolytic manganese dioxide (EMD) produced by electrodepositing on platinum anode from liquor resulting from reduction of low grade pyrolusite ore (β-MnO2) by sulfur slag was characterized as cathode in alkaline Zn-MnO2 batteries. Ore produced sample (EMD1) was performed well in comparison with EMD standard (EMD2) (commercial battery grade electrolytic manganese dioxide, TOSOH-Hellas GH-S). SEM morphology of Zn anode after cell reaction was carried out and showed that Zn anode has fine grains of passive film on its surface. 展开更多
关键词 electrolytic mno2 ZN AL Alkaline batteries
下载PDF
LiTFSI salt concentration effect to digest lithium polysulfides for high-loading sulfur electrodes 被引量:1
17
作者 Jin-Kwang Song Moonsoo Kim +1 位作者 Seongbae Park Young-Jun Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期574-581,I0015,共9页
Sulfur utilization improvement and control of dissolved lithium polysulfide(LiPS;Li_(2)S x,2<x≤8)are cru-cial aspects of the development of lithium-sulfur(Li-S)batteries,especially in high-loading sulfur elec-trode... Sulfur utilization improvement and control of dissolved lithium polysulfide(LiPS;Li_(2)S x,2<x≤8)are cru-cial aspects of the development of lithium-sulfur(Li-S)batteries,especially in high-loading sulfur elec-trodes and low electrolyte/sulfur(E/S)ratios.The sluggish reaction in the low E/S ratio induces poor LiPS solubility and unstable Li_(2)S electrodeposition,resulting in limited sulfur utilization,especially under high-loading sulfur electrode.In this study,we report on salt concentration effects that improve sulfur utilization with a high-loading cathode(6 mgs ulfurcm^(-2)),a high sulfur content(80 wt%)and a low E/S ratio(5 m L gs ulfur^(-1)).On the basis of the rapid LiPS dissolving in a low concentration electrolyte,we estab-lished that the quantity of Li_(2)S electrodeposition from a high Li+diffusion coefficient,referring to the reduction of LiPS precipitation,was significantly enhanced by a faster kinetic.These results demonstrate the importance of kinetic factors for the rate capability and cycle life stability of Li-S battery electrolytes through high Li_(2)S deposition under high-loading sulfur electrode. 展开更多
关键词 lithium-sulfur battery electrolyte concentration li2S deposition High-loading sulfur electrode
下载PDF
2,3-吡啶二羧酸酐用于高电压锂离子电池电解液 被引量:1
18
作者 胡大林 李枫 +1 位作者 张方畅 卢周广 《电池》 CAS 北大核心 2023年第6期591-595,共5页
将2,3-吡啶二羧酸酐(PDA)作为功能型添加剂加入电解液中,可拓宽电解液的氧化还原窗口,并先于溶剂在正负极表面形成保护膜。添加2.0%PDA后,钴酸锂/石墨全电池在85℃下存储18 h,厚度膨胀率从37.0%降低至8.4%;45℃下,以1.0 C在3.0~4.5 V循... 将2,3-吡啶二羧酸酐(PDA)作为功能型添加剂加入电解液中,可拓宽电解液的氧化还原窗口,并先于溶剂在正负极表面形成保护膜。添加2.0%PDA后,钴酸锂/石墨全电池在85℃下存储18 h,厚度膨胀率从37.0%降低至8.4%;45℃下,以1.0 C在3.0~4.5 V循环600次,容量保持率从58.3%提升至84.9%;在45℃浮充测试中,含2.0%添加剂的电池78 d后厚度膨胀率仅为9.7%。过多的PDA会导致负极阻抗显著增加,出现析锂现象。综合考虑常温和高温性能,PDA添加质量分数建议为1.0%。 展开更多
关键词 电解液 添加剂 高电压 钴酸锂(liCoO_(2)) 2 3-吡啶二羧酸酐(PDA) 高温性能 锂离子电池
下载PDF
Improvement of stability and solid-state battery performances of annealed 70Li_(2)S–30P_(2)S_(5) electrolytes by additives 被引量:5
19
作者 Hao-Tian Ren Zi-Qi Zhang +7 位作者 Jun-Zhao Zhang Lin-Feng Peng Zhen-Yuan He Ming Yu Chuang Yu Long Zhang Jia Xie Shi-Jie Cheng 《Rare Metals》 SCIE EI CAS CSCD 2022年第1期106-114,共9页
The replacement of liquid electrolyte with solid electrolyte can significantly improve the safety and power/energy density of lithium batteries.70Li_(2)S–30P_(2)S_(5) is one of the most promising solid electrolytes w... The replacement of liquid electrolyte with solid electrolyte can significantly improve the safety and power/energy density of lithium batteries.70Li_(2)S–30P_(2)S_(5) is one of the most promising solid electrolytes with high conductivity for solid–state batteries.In this work,the ionic conductivity and stability toward moisture and lithium metal of 70Li_(2)S–30P_(2)S_(5) were enhanced by introducing the different amounts of Li_(2)O additives.65Li_(2)S–30P_(2)S_(5)–1%Li_(2)O delivered the highest conductivity,while 65Li_(2)S–30P_(2)S_(5)–5%Li_(2)O showed the best moisture stability and improved lithium compatibility.Solid-state batteries using 65Li_(2)S–30P_(2)S_(5)–5%Li_(2)O electrolyte and high-voltage LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2) cathode exhibited low initial discharge capacity(100 mAh·g^(-1))and Coulombic efficiency(69%).Li_(3)InCl_(6) electrolytes were introduced both in the cathode mixture to replace sulfide electrolyte and in the interface layer to improve the cathode compatibility for the solid-state batteries,showing enhanced discharge capacity(175 mAh·g^(-1))and improved initial Coulombic efficiency(86%).Moreover,it also exhibited good performance at-20℃. 展开更多
关键词 Solid electrolyte 70li2S–30P2S5 Stability ADDITIVES Solid-state batteries
原文传递
锂氧电池有机电解液的研究进展 被引量:1
20
作者 陈浩 杨冬月 +1 位作者 黄岗 张新波 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第7期7-20,共14页
随着消费类电子产品和新能源汽车产业的迅速发展,传统的锂离子电池已经不能满足日益增长的能源需求。为了应对这一挑战,许多高比能电池被提出和研发。其中,锂氧电池以其超高的能量密度引起了广泛的关注,但其可逆性较差问题严重限制了锂... 随着消费类电子产品和新能源汽车产业的迅速发展,传统的锂离子电池已经不能满足日益增长的能源需求。为了应对这一挑战,许多高比能电池被提出和研发。其中,锂氧电池以其超高的能量密度引起了广泛的关注,但其可逆性较差问题严重限制了锂氧电池的进一步发展。在锂氧电池中,电解液是一个重要的组成部分,其组分和配比对电池的放电容量、倍率性能和负极稳定性等方面具有至关重要的影响。本文以电解液的组分为线索,对锂氧电池有机电解液的发展历程以及最新研究成果进行了梳理和总结。同时,对于降低过电势和抑制电解液分解的展望,也为锂氧电池的未来发展指明了方向。 展开更多
关键词 锂氧电池 有机电解液 溶剂 锂盐 添加剂
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部