期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
提高Li/MnO_2扣式电池质量的研究 被引量:5
1
作者 余世英 房艳 《盐湖研究》 CSCD 1999年第4期68-72,共5页
探索了提高MnO2 电化学活性的方法,正极材料和电解液的配比和用量,以及工艺过程中应注意的问题。
关键词 正极材料 二氧化锰 扣式电池 质量 锂电池 电池
下载PDF
锂离子电池阴极材料Li_(1+x)Mn_2O_4的水热合成及表征 被引量:18
2
作者 刘兴泉 李庆 于作龙 《合成化学》 CAS CSCD 1999年第4期382-388,共7页
以化学MnO2(CMD)为Mn源,LiNO3和LiOH·H2O分别为Li源,采用无机水热合成法合成了锂离子二次电池的阴极材料Li1+xMn2O4(0≤x<1),并采用XRD,BET,TEM,TGA和电化学测试等手段对材料进行了表征。结果表明,在240℃水热晶化72h所得样品... 以化学MnO2(CMD)为Mn源,LiNO3和LiOH·H2O分别为Li源,采用无机水热合成法合成了锂离子二次电池的阴极材料Li1+xMn2O4(0≤x<1),并采用XRD,BET,TEM,TGA和电化学测试等手段对材料进行了表征。结果表明,在240℃水热晶化72h所得样品为棕红色,主要以γ-Mn2O3和层状LiMnO2形式存在。当Li/Mn摩尔比为1∶1时,其首次充电比容量达到205.35mAh/g,首次放电比容量达到178.80mAh/g。样品经650℃空气中焙烧6h后转变成以Li1+xMn2O4尖晶石型形式存在,其首次放电比容量下降到110mAh/g~120mAh/g。 展开更多
关键词 水热合成 锂离子电池 阴极材料 尖晶石
下载PDF
锂离子电池富锂正极材料Li[Li_(0.2)Ni_(0.16)Mn_(0.56)Co_(0.06)Al_(0.02)]O_2的合成和电化学性能 被引量:4
3
作者 叶艳艳 张海朗 《化工新型材料》 CAS CSCD 北大核心 2013年第1期45-47,共3页
用溶胶-凝胶法首次合成了富锂正极材料Li[Li0.2Ni0.16Mn0.56Co0.06Al0.02]O2,它可以看成是Li[Li1/3Mn2/3]O2和LiNi0.4Mn0.4Co0.15Al0.05O2形成的固溶体。XRD测试表明该材料具有ɑ-NaFeO2层状结构,用SEM观察材料粒径为100nm左右。充放电... 用溶胶-凝胶法首次合成了富锂正极材料Li[Li0.2Ni0.16Mn0.56Co0.06Al0.02]O2,它可以看成是Li[Li1/3Mn2/3]O2和LiNi0.4Mn0.4Co0.15Al0.05O2形成的固溶体。XRD测试表明该材料具有ɑ-NaFeO2层状结构,用SEM观察材料粒径为100nm左右。充放电测试得到,材料在2~4.8V范围内,0.1C的电流下,20℃时,首次放电比容量达221.8mAh/g,库伦效率为85.3%;55℃时,首次放电比容量达281.7mAh/g,库伦效率为93.0%;且该材料具有很好的循环稳定性及优良的倍率性能。通过循环伏安测试分析了该材料的充放电机理。 展开更多
关键词 锂离子电池 li[li0 2Ni0 16Mn0 56Co0 06Al0 02]O2 层状结构 电化学性能
下载PDF
Electrochemical performance of Li-rich cathode material,0.3Li_2MnO_3-0.7LiMn_(1/3)Ni_(1/3)Co_(1/3)O_2 microspheres with F-doping 被引量:14
4
作者 Ting Liu Shi-Xi Zhao +2 位作者 Lu-Lu Gou Xia Wu Ce-Wen Nan 《Rare Metals》 SCIE EI CAS CSCD 2019年第3期189-198,共10页
Layered F-doped cathode materials 0.3 Li_2 MnO_3-0.7 LiMn_(1/3)Ni_(1/3)CO_(1/3))O_(2-x)F_x(x = 0, 0.01, 0.02, 0.03, 0.04,0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation me... Layered F-doped cathode materials 0.3 Li_2 MnO_3-0.7 LiMn_(1/3)Ni_(1/3)CO_(1/3))O_(2-x)F_x(x = 0, 0.01, 0.02, 0.03, 0.04,0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation method. The sample of x = 0.02 demonstrates a large discharge capacity of226 mAh g^(-1) over 100 cycles at 0.1 C and excellent rate performance with discharge capacity of 96 mAh g-1 at 5.0 C and room temperature. Particularly, this material shows much enhanced electrochemical performances even at high temperature of 55 ℃. It delivers a quite high discharge capacity of 233.7 mAh·g^(-1) at 1.0 C with capacity retention as high as 97.9% after 100 cycles. The results demonstrate that the fluorine incorporation stabilizes the cathode structure and maintains stable interfacial resistances. 展开更多
关键词 liTHIUM-ION battery Cathode materials 0.3li2mno3-0.7liMn1/3Ni1/3Co1/3O2-xFx F-doped
原文传递
Spinel-layered integrate structured nanorods with both high capacity and superior high-rate capability as cathode material for lithium-ion batteries 被引量:4
5
作者 Huibing He Hengjiang Cong +2 位作者 Ya Sun Ling Zan Youxiang Zhang 《Nano Research》 SCIE EI CAS CSCD 2017年第2期556-569,共14页
Spinel phase LiMn2O4 was successfully embedded into monoclinic phase layered- structured Li2MnO3 nanorods, and these spineMayered integrate structured nanorods showed both high capacities and superior high-rate capabi... Spinel phase LiMn2O4 was successfully embedded into monoclinic phase layered- structured Li2MnO3 nanorods, and these spineMayered integrate structured nanorods showed both high capacities and superior high-rate capabilities as cathode material for lithium-ion batteries (LIBs). Pristine Li2MnO3 nanorods were synthesized by a simple rheological phase method using α-MnO2 nanowires as precursors. The spinel-layered integrate structured nanorods were fabricated by a facile partial reduction reaction using stearic acid as the reductant. Both structural characterizations and electrochemical properties of the integrate structured nanorods verified that LiMn2O4 nanodomains were embedded inside the pristine Li2MnO3 nanorods. When used as cathode materials for LIBs, the spineMayered integrate structured Li2MnO3 nanorods (SL-Li2MnO3) showed much better performances than the pristine layered-structured Li2MnO3 nanorods (L-Li2MnO3). When charge-discharged at 20 mA.g-1 in a voltage window of 2.0-4.8 V, the SL-Li2MnO3 showed discharge capacities of 272.3 and 228.4 mAh.g-1 in the first and the 60th cycles, respectively, with capacity retention of 83.8%. The SL-Li2MnO3 also showed superior high-rate performances. When cycled at rates of 1 C, 2 C, 5 C, and 10 C (1 C = 200 mA-g-1) for hundreds of cycles, the discharge capacities of the SL-Li2MnO3 reached 218.9, 200.5, 147.1, and 123.9 mAh-g-1, respectively. The superior performances of the SL-Li2MnO3 are ascribed to the spineMayered integrated structures. With large capacities and superior high-rate performances, these spinel-layered integrate structured materials are good candidates for cathodes of next-generation high-power LIBs. 展开更多
关键词 lithium-ion batteries cathode layered-spinel integrated structure li2mno3 NANORODS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部