This paper further studies global asymptotic stability of the zero solusion of Liènard's equation x+f(x)x+g(x) = 0 (1) We obtain the following result: Theorem. The zero solution of equation (1) is globally as...This paper further studies global asymptotic stability of the zero solusion of Liènard's equation x+f(x)x+g(x) = 0 (1) We obtain the following result: Theorem. The zero solution of equation (1) is globally asymptoticly stable if f(x) and g(x) satisfy one of the following conditions. Condition 1: 1) xg(x)>0, for all x≠0; 2) x integral from n=0 to x f(x)dx≥0 and on any interval of x, integral from n=0 to x f(x)dx0; 3) integral from n-0 to x g(x)dx→+∞, as |x|→+∞, Condition 2: 1) xg(x)>0, for all x≠0; 2) x integral from n=0 to x f(x)dx≥0 and on any interval of x, integral from n=0 to x f(x)dx0; 3) F(x) and F(-x)(x>0) are all infinity,where F(x)= integral from n=0 to x f(x)dx. Compared with [1—3], this result further weakens condition on f(x), thus, it has more extensive working field.展开更多
In this paper, we deal with the existence of unbounded orbits of the mapping $$\left\{ \begin{gathered} \theta _1 = \theta + 2n\pi + \frac{1}{\rho }\mu (\theta ) + o(\rho ^{ - 1} ), \hfill \\ \rho _1 = \rho + c - \mu ...In this paper, we deal with the existence of unbounded orbits of the mapping $$\left\{ \begin{gathered} \theta _1 = \theta + 2n\pi + \frac{1}{\rho }\mu (\theta ) + o(\rho ^{ - 1} ), \hfill \\ \rho _1 = \rho + c - \mu '(\theta ) + o(1), \rho \to \infty \hfill \\ \end{gathered} \right.$$ , where n is a positive integer, c is a constant and μ(θ) is a 2π-periodic function. We prove that if c > 0 and μ(θ) ≠ 0, θ, ∈ [0, 2?], then every orbit of the given mapping goes to infinity in the future for ρ large enough; if c < 0 and μ(θ) ≠ 0, θ ∈ [0, 2π], then every orbit of the given mapping goes to infinity in the past for ρ large enough. By using this result, we prove that the equation x″+f(x)x′+ax +?bx ?+?(x)=p(t) has unbounded solutions provided that a, b satisfy $1/\sqrt a + 1/\sqrt b = 2/n$ and ?(x) satisfies some limit conditions. At the same time, we obtain the existence of 2π-periodic solutions of this equation.展开更多
By coincidence degree,the existence of solution to the boundary value problem of a generalized Liénard equationa(t)x'+F(x,x′)x′+g(x)=e(t), x(0)=x(2π),x′(0)=x′(2π)is proved,where a∈C 1[0,2π],a(t)>...By coincidence degree,the existence of solution to the boundary value problem of a generalized Liénard equationa(t)x'+F(x,x′)x′+g(x)=e(t), x(0)=x(2π),x′(0)=x′(2π)is proved,where a∈C 1[0,2π],a(t)>0(0≤t≤2π),a(0)=a(2π),F(x,y)=f(x)+α|y| β,α>0,β>0 are all constants,f∈C(R,R),e∈C[0,2π]. An example is given as an application.展开更多
In this paper, we study the second-order nonlinear differential systems of Liénard-type x˙=1a(x)[ h(y)−F(x) ], y˙=−a(x)g(x). Necessary and sufficient conditions to ensure that all nontrivial solutions are oscil...In this paper, we study the second-order nonlinear differential systems of Liénard-type x˙=1a(x)[ h(y)−F(x) ], y˙=−a(x)g(x). Necessary and sufficient conditions to ensure that all nontrivial solutions are oscillatory are established by using a new nonlinear integral inequality. Our results substantially extend and improve previous results known in the literature.展开更多
We are concerned with the existence of quasi-periodic solutions for the following equation x" + Fx (x, t)x' + ω2x + φ(x,t) = 0,where F and φ are smooth functions and 2π-periodic in t, ω> 0 is a constant...We are concerned with the existence of quasi-periodic solutions for the following equation x" + Fx (x, t)x' + ω2x + φ(x,t) = 0,where F and φ are smooth functions and 2π-periodic in t, ω> 0 is a constant. Under some assumptions on the parities of F and φ, we show that the Dancer's function, which is used to study the existence of periodic solutions, also plays a role for the existence of quasi-periodic solutions and the Lagrangian stability (i.e. all solutions are bounded).展开更多
By means of Mawhin's continuation theorem,we study a kind of lie'nard functional differential equations:x"(t)+f(x(t))x'(t)+g(t,x(t-τ(t))) = e(t).Some new results on the existence and uniqueness of pe...By means of Mawhin's continuation theorem,we study a kind of lie'nard functional differential equations:x"(t)+f(x(t))x'(t)+g(t,x(t-τ(t))) = e(t).Some new results on the existence and uniqueness of periodic solutions are obtained.展开更多
We present some exact integrability cases of the extended Liénard equation y′′+ f(y)(y′)n +k(y)(y′)m + g(y)y′+ h(y) = 0, with n > 0 and m > 0 arbitrary constants, while f(y), k(y), g(y), and h(y) are a...We present some exact integrability cases of the extended Liénard equation y′′+ f(y)(y′)n +k(y)(y′)m + g(y)y′+ h(y) = 0, with n > 0 and m > 0 arbitrary constants, while f(y), k(y), g(y), and h(y) are arbitrary functions. The solutions are obtained by transforming the equation Liénard equation to an equivalent first kind first order Abel type equation given bydv/dy= f(y)v3-n+ k(y)v3-m+ g(y)v2+ h(y)v3, with v = 1/y′.As a first step in our study we obtain three integrability cases of the extended quadratic-cubic Liénard equation,corresponding to n = 2 and m = 3, by assuming that particular solutions of the associated Abel equation are known. Under this assumption the general solutions of the Abel and Liénard equations with coefficients satisfying some differential conditions can be obtained in an exact closed form. With the use of the Chiellini integrability condition, we show that if a particular solution of the Abel equation is known, the general solution of the extended quadratic cubic Liénard equation can be obtained by quadratures. The Chiellini integrability condition is extended to generalized Abel equations with g(y) ≡ 0 and h(y) ≡ 0, and arbitrary n and m, thus allowing to obtain the general solution of the corresponding Liénard equation. The application of the generalized Chiellini condition to the case of the reduced Riccati equation is also considered.展开更多
This work focuses on stochastic Lienard equations with state-dependent switching. First, the existence and uniqueness of a strong solution are obtained by successive construction method. Next, strong Feller property i...This work focuses on stochastic Lienard equations with state-dependent switching. First, the existence and uniqueness of a strong solution are obtained by successive construction method. Next, strong Feller property is proved by introducing certain auxiliary processes and using the Radon-Nikodym derivatives and truncation arguments. Based on these results, positive Harris recurrence and exponential ergodicity are obtained under the Foster-Lyapunov drift conditions. Finally, examples using van der Pol equations are presented for illustrations, and the corresponding Foster-Lyapunov functions for the examples are constructed explicitly.展开更多
This paper aims to investigate the retarded Liénard-type equation+f 1(x)+f 2(x)(t-τ)+f 3(x)2+φ(x)+g(x(t-τ))=0,where τ is a nonnegative constant, f 1,f 2,f 3,φ and g are continuous functions on R. Using Liapu...This paper aims to investigate the retarded Liénard-type equation+f 1(x)+f 2(x)(t-τ)+f 3(x)2+φ(x)+g(x(t-τ))=0,where τ is a nonnegative constant, f 1,f 2,f 3,φ and g are continuous functions on R. Using Liapunov functional method, we establish a sufficient condition on the stability and boundedness of the solutions of above equation. This will generalize the main results of reference [2].展开更多
In this study,the design of a computational heuristic based on the nonlinear Liénard model is presented using the efficiency of artificial neural networks(ANNs)along with the hybridization procedures of global an...In this study,the design of a computational heuristic based on the nonlinear Liénard model is presented using the efficiency of artificial neural networks(ANNs)along with the hybridization procedures of global and local search approaches.The global search genetic algorithm(GA)and local search sequential quadratic programming scheme(SQPS)are implemented to solve the nonlinear Liénard model.An objective function using the differential model and boundary conditions is designed and optimized by the hybrid computing strength of the GA-SQPS.The motivation of the ANN procedures along with GA-SQPS comes to present reliable,feasible and precise frameworks to tackle stiff and highly nonlinear differentialmodels.The designed procedures of ANNs along with GA-SQPS are applied for three highly nonlinear differential models.The achieved numerical outcomes on multiple trials using the designed procedures are compared to authenticate the correctness,viability and efficacy.Moreover,statistical performances based on different measures are also provided to check the reliability of the ANN along with GASQPS.展开更多
In this paper the generalized nonlinear Euler differential equation t^2k(tu')u''+ t(f(u) + k(tu'))u' + g(u) = 0 is considered. Here the functions f(u), g(u) and k(u) satisfy smoothness conditio...In this paper the generalized nonlinear Euler differential equation t^2k(tu')u''+ t(f(u) + k(tu'))u' + g(u) = 0 is considered. Here the functions f(u), g(u) and k(u) satisfy smoothness conditions which guarantee the uniqueness of solutions of initial value problems, however, no conditions of sub(super) linearity are assumed. W'e present some necessary and sufficient conditions and some tests for the equivalent planar system to have or fail to have property (X^+), which is very important for the existence of periodic solutions and oscillation theory.展开更多
G.Villar's Method^[4] is improved to prove theorems for the existence of periodic solution(limit cycles of Liènard equation and a more general class of nonlinear differential equations.The results obtained in...G.Villar's Method^[4] is improved to prove theorems for the existence of periodic solution(limit cycles of Liènard equation and a more general class of nonlinear differential equations.The results obtained in this paper conclude the corresponding theorems in [4].展开更多
文摘This paper further studies global asymptotic stability of the zero solusion of Liènard's equation x+f(x)x+g(x) = 0 (1) We obtain the following result: Theorem. The zero solution of equation (1) is globally asymptoticly stable if f(x) and g(x) satisfy one of the following conditions. Condition 1: 1) xg(x)>0, for all x≠0; 2) x integral from n=0 to x f(x)dx≥0 and on any interval of x, integral from n=0 to x f(x)dx0; 3) integral from n-0 to x g(x)dx→+∞, as |x|→+∞, Condition 2: 1) xg(x)>0, for all x≠0; 2) x integral from n=0 to x f(x)dx≥0 and on any interval of x, integral from n=0 to x f(x)dx0; 3) F(x) and F(-x)(x>0) are all infinity,where F(x)= integral from n=0 to x f(x)dx. Compared with [1—3], this result further weakens condition on f(x), thus, it has more extensive working field.
基金the National Natural Science Foundation of China(Grant No.10471099)the Fund of Beijing Education Committee(Grant No.KM200410028003)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China
文摘In this paper, we deal with the existence of unbounded orbits of the mapping $$\left\{ \begin{gathered} \theta _1 = \theta + 2n\pi + \frac{1}{\rho }\mu (\theta ) + o(\rho ^{ - 1} ), \hfill \\ \rho _1 = \rho + c - \mu '(\theta ) + o(1), \rho \to \infty \hfill \\ \end{gathered} \right.$$ , where n is a positive integer, c is a constant and μ(θ) is a 2π-periodic function. We prove that if c > 0 and μ(θ) ≠ 0, θ, ∈ [0, 2?], then every orbit of the given mapping goes to infinity in the future for ρ large enough; if c < 0 and μ(θ) ≠ 0, θ ∈ [0, 2π], then every orbit of the given mapping goes to infinity in the past for ρ large enough. By using this result, we prove that the equation x″+f(x)x′+ax +?bx ?+?(x)=p(t) has unbounded solutions provided that a, b satisfy $1/\sqrt a + 1/\sqrt b = 2/n$ and ?(x) satisfies some limit conditions. At the same time, we obtain the existence of 2π-periodic solutions of this equation.
文摘By coincidence degree,the existence of solution to the boundary value problem of a generalized Liénard equationa(t)x'+F(x,x′)x′+g(x)=e(t), x(0)=x(2π),x′(0)=x′(2π)is proved,where a∈C 1[0,2π],a(t)>0(0≤t≤2π),a(0)=a(2π),F(x,y)=f(x)+α|y| β,α>0,β>0 are all constants,f∈C(R,R),e∈C[0,2π]. An example is given as an application.
文摘In this paper, we study the second-order nonlinear differential systems of Liénard-type x˙=1a(x)[ h(y)−F(x) ], y˙=−a(x)g(x). Necessary and sufficient conditions to ensure that all nontrivial solutions are oscillatory are established by using a new nonlinear integral inequality. Our results substantially extend and improve previous results known in the literature.
基金supported by the Special Funds for Major State Basic Research Projects(973 Projects)NSFC(Grant No.10325103)TRAPOYT.
文摘We are concerned with the existence of quasi-periodic solutions for the following equation x" + Fx (x, t)x' + ω2x + φ(x,t) = 0,where F and φ are smooth functions and 2π-periodic in t, ω> 0 is a constant. Under some assumptions on the parities of F and φ, we show that the Dancer's function, which is used to study the existence of periodic solutions, also plays a role for the existence of quasi-periodic solutions and the Lagrangian stability (i.e. all solutions are bounded).
基金Foundation item: Supported by the Anhui Natural Science Foundation(050460103) Supported by the NSF of Anhui Educational Bureau(KJ2008B247) Supported by the RSPYT of Anhui Educational Bu- reau(2008jq1111)
文摘By means of Mawhin's continuation theorem,we study a kind of lie'nard functional differential equations:x"(t)+f(x(t))x'(t)+g(t,x(t-τ(t))) = e(t).Some new results on the existence and uniqueness of periodic solutions are obtained.
文摘We present some exact integrability cases of the extended Liénard equation y′′+ f(y)(y′)n +k(y)(y′)m + g(y)y′+ h(y) = 0, with n > 0 and m > 0 arbitrary constants, while f(y), k(y), g(y), and h(y) are arbitrary functions. The solutions are obtained by transforming the equation Liénard equation to an equivalent first kind first order Abel type equation given bydv/dy= f(y)v3-n+ k(y)v3-m+ g(y)v2+ h(y)v3, with v = 1/y′.As a first step in our study we obtain three integrability cases of the extended quadratic-cubic Liénard equation,corresponding to n = 2 and m = 3, by assuming that particular solutions of the associated Abel equation are known. Under this assumption the general solutions of the Abel and Liénard equations with coefficients satisfying some differential conditions can be obtained in an exact closed form. With the use of the Chiellini integrability condition, we show that if a particular solution of the Abel equation is known, the general solution of the extended quadratic cubic Liénard equation can be obtained by quadratures. The Chiellini integrability condition is extended to generalized Abel equations with g(y) ≡ 0 and h(y) ≡ 0, and arbitrary n and m, thus allowing to obtain the general solution of the corresponding Liénard equation. The application of the generalized Chiellini condition to the case of the reduced Riccati equation is also considered.
基金Supported by the National Natural Science Foundation of China(No.11171024)the National Science Foundation,United States(No.DMS-0907753)
文摘This work focuses on stochastic Lienard equations with state-dependent switching. First, the existence and uniqueness of a strong solution are obtained by successive construction method. Next, strong Feller property is proved by introducing certain auxiliary processes and using the Radon-Nikodym derivatives and truncation arguments. Based on these results, positive Harris recurrence and exponential ergodicity are obtained under the Foster-Lyapunov drift conditions. Finally, examples using van der Pol equations are presented for illustrations, and the corresponding Foster-Lyapunov functions for the examples are constructed explicitly.
文摘This paper aims to investigate the retarded Liénard-type equation+f 1(x)+f 2(x)(t-τ)+f 3(x)2+φ(x)+g(x(t-τ))=0,where τ is a nonnegative constant, f 1,f 2,f 3,φ and g are continuous functions on R. Using Liapunov functional method, we establish a sufficient condition on the stability and boundedness of the solutions of above equation. This will generalize the main results of reference [2].
文摘In this study,the design of a computational heuristic based on the nonlinear Liénard model is presented using the efficiency of artificial neural networks(ANNs)along with the hybridization procedures of global and local search approaches.The global search genetic algorithm(GA)and local search sequential quadratic programming scheme(SQPS)are implemented to solve the nonlinear Liénard model.An objective function using the differential model and boundary conditions is designed and optimized by the hybrid computing strength of the GA-SQPS.The motivation of the ANN procedures along with GA-SQPS comes to present reliable,feasible and precise frameworks to tackle stiff and highly nonlinear differentialmodels.The designed procedures of ANNs along with GA-SQPS are applied for three highly nonlinear differential models.The achieved numerical outcomes on multiple trials using the designed procedures are compared to authenticate the correctness,viability and efficacy.Moreover,statistical performances based on different measures are also provided to check the reliability of the ANN along with GASQPS.
文摘In this paper the generalized nonlinear Euler differential equation t^2k(tu')u''+ t(f(u) + k(tu'))u' + g(u) = 0 is considered. Here the functions f(u), g(u) and k(u) satisfy smoothness conditions which guarantee the uniqueness of solutions of initial value problems, however, no conditions of sub(super) linearity are assumed. W'e present some necessary and sufficient conditions and some tests for the equivalent planar system to have or fail to have property (X^+), which is very important for the existence of periodic solutions and oscillation theory.
文摘G.Villar's Method^[4] is improved to prove theorems for the existence of periodic solution(limit cycles of Liènard equation and a more general class of nonlinear differential equations.The results obtained in this paper conclude the corresponding theorems in [4].