The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispers...The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispersed Nb N quantum dots anchored on nitrogen-doped hollow carbon nanorods(NbN@NHCR)are elaborately developed as efficient Li PSs immobilizer and Li stabilizer for high-performance Li-S full batteries.Density functional theory(DFT)calculations and experimental characterizations demonstrate that the sulfiphilic and lithiophilic NbN@NHCR hybrid can not only efficiently immobilize the soluble Li PSs and facilitate diffusion-conversion kinetics for alleviating the shuttling effect,but also homogenize the distribution of Li+ions and regulate uniform Li deposition for suppressing Li-dendrite growth.As a result,the assembled Li-S full batteries(NbN@NHCR-S||Nb N@NHCR-Li)deliver excellent long-term cycling stability with a low decay rate of 0.031%per cycle over 1000 cycles at high rate of 2 C.Even at a high S loading of 5.8 mg cm^(-2)and a low electrolyte/sulfur ratio of 5.2μL mg^(-1),a large areal capacity of 6.2 mA h cm^(-2)can be achieved in Li-S pouch cell at 0.1 C.This study provides a new perspective via designing a dual-functional sulfiphilic and lithiophilic hybrid to address serious issues of the shuttle effect of S cathode and dendrite growth of Li anode.展开更多
The commercialization of lithium-sulfur(Li-S)batteries faces several challenges,including poor conductivity,unexpected volume expansion,and continuous sulfur loss from the cathode due to redox shuttling.In this study,...The commercialization of lithium-sulfur(Li-S)batteries faces several challenges,including poor conductivity,unexpected volume expansion,and continuous sulfur loss from the cathode due to redox shuttling.In this study,we introduce a novel polymer via a simple cross-linking between poly(ether-thioureas)(PETU)and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)as a bifunctio nal binder for Li-S batteries(devotes as"PPTU").Compared to polyvinylidene fluoride(PVDF),as-prepared PPTU exhibits significantly higher electrical conductivity,facilitating electrochemical reactions.Additionally,PPTU demonstrates effective adsorption of lithium polysulfides,leading to improved cycling stability by suppressing the shuttling effect.We investigate this behavior by monitoring morphological changes at the cell interface using synchrotron X-ray tomography.Cells with PPTU binders exhibit remarkable rate performance,desired reversibility,and excellent cycling stability even under stringent bending and twisting conditions.Our work represents promising progress in functional polymer binder development for Li-S batteries.展开更多
As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,a...As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,as the key criterions for Li-S batteries'practical applications,still attract less attention.Herein,an aqueous multifunction binder(named PEI-TIC)is prepared via an easy and fast epoxy-amine ring-opening reaction(10 min),which can not only give the sulfur cathode a stable mechanical property,a strong chemical adsorption and catalytic conversion ability,but also a fire safety improvement.The Li-S batteries based on the PEI-TIC binder display a high discharge capacity(1297.8 mAh g^(-1)),superior rate performance(823.0 mAh g^(-1)at 2 C),and an ultralow capacity decay rate of 0.035%over more than 800 cycles.Even under 7.1 mg cm^(-2)S-loaded,the PEI-TIC electrode can also achieve a high areal capacity of 7.2 mA h g^(-1)and excellent cycling stability,confirming its application potential.Moreover,it is also noted that TG-FTIR test is performed for the first time to explore the flame-retardant mechanism of polymer binders.This work provides an economically and environmentally friendly binder for the practical application and inspires the exploration of the flame-retardant mechanism of all electrode components.展开更多
The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,...The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,a bi-service host with Co-Fe binary-metal selenide quantum dots embedded in three-dimensional inverse opal structured nitrogen-doped carbon skeleton(3DIO FCSe-QDs@NC)is elaborately designed for both sulfur cathode and Li metal anode.The highly dispersed FCSe-QDs with superb adsorptive-catalytic properties can effectively immobilize the soluble Li PSs and improve diffusion-conversion kinetics to mitigate the polysulfide-shutting behaviors.Simultaneously,the 3D-ordered porous networks integrated with abundant lithophilic sites can accomplish uniform Li deposition and homogeneous Li-ion flux for suppressing the growth of dendrites.Taking advantage of these merits,the assembled Li-S full batteries with 3DIO FCSe-QDs@NC host exhibit excellent rate performance and stable cycling ability(a low decay rate of 0.014%over 2,000 cycles at 2C).Remarkably,a promising areal capacity of 8.41 mAh cm^(-2)can be achieved at the sulfur loading up to 8.50 mg cm^(-2)with an ultra-low electrolyte/sulfur ratio of 4.1μL mg^(-1).This work paves the bi-serve host design from systematic experimental and theoretical analysis,which provides a viable avenue to solve the challenges of both sulfur and Li electrodes for practical Li-S full batteries.展开更多
The lithium-sulfur(Li-S)battery,as one of the energy storage devices,has been in the limelight due to its high theoretical energy density.However,the poor redox kinetics and the"shuttle effect"of polysulfide...The lithium-sulfur(Li-S)battery,as one of the energy storage devices,has been in the limelight due to its high theoretical energy density.However,the poor redox kinetics and the"shuttle effect"of polysulfides severely restrict the use of Li-S batteries in practical applications.Herein,a novel bimetallic LaNiO_(3) functional material with high electrical conductivity and catalytic property is prepared to act as a high-efficiency polysulfide shuttling stopper.The three LaNiO_(3) samples with different physical/chemical characteristics are obtained by controlling the calcination temperature.In conjunction with the high electrical conductivity and excellent catalytic properties of the as-prepared materials,the appropriate chemisorption toward polysulfides offers great potential to enhance electrochemical stability for highperformance Li-S batteries.Particularly,the Li-S cell with the separator modified by such functional material gives a specific capacity of 658 mA h g^(-1) after 500 cycles at a high current density of 2 C.Even with high sulfur loading of 6.05 mg cm^(-2),the Li-S battery still exhibits an areal specific capacity of 2.81 m A h cm^(-2)after 150 cycles.This work paves a new avenue for the rational design of materials for separator modification in high-performance Li-S batteries.展开更多
An emerging practice in the realm of Li-S batteries lies in the employment of single-atom catalysts(SACs)as effective mediators to promote polysulfide conversion,but monometallic SACs affording isolated geometric disp...An emerging practice in the realm of Li-S batteries lies in the employment of single-atom catalysts(SACs)as effective mediators to promote polysulfide conversion,but monometallic SACs affording isolated geometric dispersion and sole electronic configuration limit the catalytic benefits and curtail the cell performance.Here,we propose a class of dual-atom catalytic moieties comprising hetero-or homo-atomic pairs anchored on N-doped graphene(NG)to unlock the liquid–solid redox puzzle of sulfur,readily realizing Li-S full cell under high-rate-charging conditions.As for Fe-Ni-NG,in-depth experimental and theoretical analysis reveal that the hetero-atomic orbital coupling leads to altered energy levels,unique electronic structures,and varied Fe oxidation states in comparison with homo-atomic structures(FeFe-NG or Ni-Ni-NG).This would weaken the bonding energy of polysulfide intermediates and thus enable facile electrochemical kinetics to gain rapid liquid-solid Li_(2)S_(4)?Li_(2)S conversion.Encouragingly,a Li-S battery based on the S@Fe-Ni-NG cathode demonstrates unprecedented fast-charging capability,documenting impressive rate performance(542.7 mA h g^(-1)at 10.0 C)and favorable cyclic stability(a capacity decay of 0.016%per cycle over 3000 cycles at 10.0 C).This finding offers insights to the rational design and application of dual-atom mediators for Li-S batteries.展开更多
Lithium-sulfur(Li-S)batteries with high theoretical energy density are promising advanced energy storage devices.However,shuttling of dissolute lithium polysulfide(LiPSs)and sluggish conversion kinetics impede their a...Lithium-sulfur(Li-S)batteries with high theoretical energy density are promising advanced energy storage devices.However,shuttling of dissolute lithium polysulfide(LiPSs)and sluggish conversion kinetics impede their applications.Herein,single nickel(Ni)atoms on two-dimensional(2D)nitrogen(N)-doped carbon with Ni-N_(4)-O overcoordinated structure(SANi-N_(4)-O/NC)are prepared and firstly used as a sulfur host of Li-S batteries.Due to the efficient polysulfides traps and highly LiPSs conversion effect of SANi-N_(4)-O/NC,the electrochemical performance of Li-S batteries obviously improved.The batteries can well operate even under high sulfur loading(5.8 mg cm^(-2))and lean electrolyte(6.1μL mg^(-1))condition.Meanwhile,density functional theory(DFT)calculations demonstrate that Ni single atom’s active sites decrease the energy barriers of conversion reactions from Li_(2)S_(8)to Li2S due to the strong interaction between SANi-N_(4)-O/NC and LiPSs.Thus,the kinetic conversion of LiPSs was accelerated and the shuttle effect is suppressed on SANi-N_(4)-O/NC host.This study provides a new design strategy for a 2D structure with single-atom overcoordinated active sites to facilitate the fast kinetic conversion of LiPSs for Li-S cathode.展开更多
Sulfur-rich polymers have gained a great deal of attention as the next-generation active materials in lithium-sulfur(Li-S)batteries due to their low cost,environmental compatibility,naturally sulfur uniform dispersion...Sulfur-rich polymers have gained a great deal of attention as the next-generation active materials in lithium-sulfur(Li-S)batteries due to their low cost,environmental compatibility,naturally sulfur uniform dispersion,and distinctive structure covalently bonding with sulfur atoms.However,the poor electrical conductivity and undesirable additional shuttle effect still hinder the commercial application of sulfur-rich polymers.Herein,we report a flexible semi-immobilization strategy to prepare allylterminated hyperbranched poly(ethyleneimine)-functionalized reduced graphene oxide(A-PEI-EGO)as sulfur-rich copolymer backbone.The semi-immobilization strategy can effectively reconcile the demand for polymer skeleton and conductive substrates through forming quaternary ammonium groups and reducing oxygen-containing functional groups,resulting in enhanced skeleton adsorption capacity and substrate electronic conductivity,respectively.Furthermore,the stable covalent bonding connection based on polymer molecules(A-PEI)not only completely prevents the additional shuttle effect of lithiation organic molecules and even sulfur-rich oligomers,but provides more inverse vulcanization active sites.As a result,the as-prepared A-PEI-EGO-S cathodes display an initial discharge capacity of1338 m A h g^(-1)at a rate of 0.1 C and an outstanding cycling stability of 0.046%capacity decay per cycle over 600 cycles.Even under 6.2 mg cm^(-2)S-loaded and sparing electrolyte of 6μL mg^(-1),the A-PEI-EGO-S cathode can also achieve a superior cycling performance of 98%capacity retention after 60 cycles,confirming its application potential.展开更多
As the need for high-energy–density batteries continues to grow, lithium-sulfur(Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density com...As the need for high-energy–density batteries continues to grow, lithium-sulfur(Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents.However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject.展开更多
Lithium-sulfur batteries are severely restricted by low electronic conductivity of sulfur and Li_(2)S,shuttle effect,and slow conversion reaction of lithium polysulfides(LiPSs).Herein,we report a facile and highyield ...Lithium-sulfur batteries are severely restricted by low electronic conductivity of sulfur and Li_(2)S,shuttle effect,and slow conversion reaction of lithium polysulfides(LiPSs).Herein,we report a facile and highyield strategy for synthesizing dual-core single-atom catalyst(ZnCoN_(4)O_(2)/CN)with atomically dispersed nitrogen/oxygen-coordinated Zn-Co sites on carbon nanosheets.Based on density functional theory(DFT)calculations and LiPSs conversion catalytic ability,ZnCoN_(4)O_(2)/CN provides dual-atom sites of Zn and Co,which could facilitate Li^(+)transport and Li_(2)S diffusion,and catalyze LiPSs conversion more effectively than homonuclear bimetallic single-atom catalysts or their simple mixture and previously reported singleatom catalysts.Li-S cell with ZnCoN_(4)O_(2)/CN modified separator showed excellent rate performance(789.4 mA h g^(-1)at 5 C)and stable long cycle performance(0.05%capacity decay rate at 6C with 1000cycles,outperforming currently reported single atomic catalysts for LiPSs conversion.This work highlights the important role of metal active centers and provides a strategy for producing multifunctional dual-core single atom catalysts for high-performance Li-S cells.展开更多
Lithium sulfur batteries are regarded as a promising candidate for high-energy-density energy storage devices.However,the lithium metal anode in lithium-sulfur batteries encounters the problem of lithium dendrites and...Lithium sulfur batteries are regarded as a promising candidate for high-energy-density energy storage devices.However,the lithium metal anode in lithium-sulfur batteries encounters the problem of lithium dendrites and lithium metal consumption caused by polysulfide corrosion.Herein we design a dualfunction PMMA/PPC/LiNO3composite as an artificial solid electrolyte interphase(PMCN-SEI)to protect Li metal anode.This SEI offers multiple sites of C=O for polysulfide anchoring to constrain corrosion of Li metal anode.The lithiated polymer group and Li3N in PMCN-SEI can homogenize lithium-ion deposition behavior to achieve a dendrite-free anode.As a result,the PMCN-SEI protected Li metal anode enables the Li||Li symmetric batteries to maintain over 300 cycles(1300 h)at a capacity of 5 m Ah cm^(-2),corresponding to a cumulative capacity of 3.25 Ah cm^(-2).Moreover,Li-S batteries assembled with 20μm of Li metal anode(N/P=1.67)still deliver an initial capacity of 1166 m A h g-1at 0.5C.Hence,introducing polycarbonate polymer/inorganic composite SEI on Li provides a new solution for achieving the high energy density of Li-S batteries.展开更多
Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,c...Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,causing the electrolyte overconsumption,specific energy decline,and even safety hazards for battery devices.To build better cathodes,we propose to substitute carbons by In-doped SnO_(2)(ITO)nano ceramics that own three-in-one functionalities:1)using conductive ITO enables minimizing the total carbon content to an extremely low mass ratio(~3%)in cathodes,elevating the electrode tap density and averting the electrolyte overuse;2)polar ITO nanoclusters can serve as robust anchors toward Li polysulfide(LiPS)by electrostatic adsorption or chemical bond interactions;3)they offer catalysis centers for liquid–solid phase conversions of S-based actives.Also,such ceramics are intrinsically nonflammable,preventing S cathodes away from thermal runaway or explosion.These merits entail our configured cathodes with high tap density(1.54 g cm^(−3)),less electrolyte usage,good security for flame retardance,and decent Li-storage behaviors.With lean and LiNO_(3)-free electrolyte,packed full cells exhibit excellent redox kinetics,suppressed LiPS shuttling,and excellent cyclability.This may trigger great research enthusiasm in rational design of low-carbon and safer S cathodes.展开更多
Use of metallic Li anode raises serious concerns on the safety and operational performance of Li-S batteries due to uncontrolled hazard of Li dendrite formation, which is difficultly eliminated as long as the metallic...Use of metallic Li anode raises serious concerns on the safety and operational performance of Li-S batteries due to uncontrolled hazard of Li dendrite formation, which is difficultly eliminated as long as the metallic Li exists in the cells. Pairing lithium sulfide (Li2S) cathode with currently available metallic Lifree high-capacity anodes offers an alternative solution to this challenge. However, the performance of Li2S cathode is primarily restricted by high activation barrier upon initial charge, low active mass utilization and sluggish redox kinetics. Herein, a MXene-induced multifunctional collaborative interface is proposed to afford superb activity towards redox solid-liquid/liquid-liquid phase transformation, strong chemisorption, high conductivity and fast ionic/charge transport in high Li2S loading cathode. Applying collaborative interface effectively reduces initial voltage barrier of Li2S activation and regulates the kinetic behavior of redox polysulfide conversion. Therefore, stable operation of additive-free Li2S cathode with high areal capacities at high Li2S loading up to 9 mg cm^-2 can be achieved with less sacrifice of high capacity and rate capability in Li-S batteries. Rechargeable metallic Li-free batteries are successfully constructed by pairing this high-performance Li2S cathode with high-capacity metal oxide anodes, which delivers superior energy density to current Li-ion batteries.展开更多
采用电化学法,在硫电极表面沉积一层聚(3,4–乙烯二氧噻吩)薄膜,并研究了相关锂–硫(Li-S)电池的电化学性能。结果表明,这种简单的电化学方法容易实现在整个硫电极表面制备一层致密、均匀、厚度可控的导电高分子薄膜,并且显著提高Li-S...采用电化学法,在硫电极表面沉积一层聚(3,4–乙烯二氧噻吩)薄膜,并研究了相关锂–硫(Li-S)电池的电化学性能。结果表明,这种简单的电化学方法容易实现在整个硫电极表面制备一层致密、均匀、厚度可控的导电高分子薄膜,并且显著提高Li-S电池的循环稳定性。其中,薄膜电沉积500次时,其改性硫电极的初始放电比容量为955 m Ah/g,在放电电流密度为900 m A/g时,800次充放电循环后比容量为590 m Ah/g,即每个循环的容量损失率仅为0.047%。展开更多
Li-S batteries have been considered as one of advanced next-generation energy storage systems owing to their remarkable theoretical capacity(1672 m Ah g^(-1))and high energy density(2600 Wh kg^(-1)).However,critical i...Li-S batteries have been considered as one of advanced next-generation energy storage systems owing to their remarkable theoretical capacity(1672 m Ah g^(-1))and high energy density(2600 Wh kg^(-1)).However,critical issues,mainly pertaining to lithium polysulfide shuttle and slow sulfur reaction kinetics,have posed a fatal threat to the electrochemical performances of Li-S batteries.The situation is even worse for high sulfur-loaded and flexible cathodes,which are the essential components for practical Li-S batteries.In response,the use of metal compounds as electrocatalysts in Li-S systems have been confirmed as an effective strategy to date.Particularly,recent years have witnessed many progresses in phosphidesoptimized Li-S chemistry.This has been motivated by the superior electron conductivity and high electrocatalytic activity of phosphides.In this tutorial review,we offer a systematic summary of active metal phosphides as promoters for Li-S chemistry,aiming at helping to understanding the working mechanism of phosphide electrocatalysts and guiding the construction of advanced Li-S batteries.展开更多
The development of lithium-sulfur batteries(LSBs)is restricted by their poor cycle stability and rate performance due to the low conductivity of sulfur and severe shuttle effect.Herein,an N,O co-doped graphene layered...The development of lithium-sulfur batteries(LSBs)is restricted by their poor cycle stability and rate performance due to the low conductivity of sulfur and severe shuttle effect.Herein,an N,O co-doped graphene layered block(NOGB)with many dents on the graphene sheets is designed as effective sulfur host for high-performance LSB s.The sulfur platelets are physically confined into the dents and closely contacted with the graphene scaffold,ensuring structural stability and high conductivity.The highly doped N and O atoms can prevent the shuttle effect of sulfur species by strong chemical adsorption.Moreover,the micropores on the graphene sheets enable fast Li^+transport through the blocks.As a result,the obtained NOGB/S composite with 76 wt%sulfur content shows a high capacity of 1413 mAh g^-1 at 0.1 C,good rate performance of 433 mAh g^-1 at 10 C,and remarkable stability with 526 mAh g^-1 at after 1000 cycles at 1 C(average decay rate:0.038%per cycle).Our design provides a comprehensive route for simultaneously improving the conductivity,ion transport kinetics,and preventing the shuttle effect in LSBs.展开更多
Lithium-sulfur(Li-S)batteries are hampered by the infamous shuttle effect and slow redox kinetics,resulting in rapid capacity decay.Herein,a bifunctional catalysis CoB/BN@rGO with integrated structure and synergy effe...Lithium-sulfur(Li-S)batteries are hampered by the infamous shuttle effect and slow redox kinetics,resulting in rapid capacity decay.Herein,a bifunctional catalysis CoB/BN@rGO with integrated structure and synergy effect between adsorption and catalysis is proposed to solve the above problems.The integrated CoB and BN are simultaneously and uniformly introduced on the rGO substrate through a one-step calcination strategy,applied to modify the cathode side of PP separator.The transition metal borides can catalyze the conversion of lithium polysulfides(Li_(2)Sn,n≥4),whereas the bond of B-S is too weak to absorb LPS.Thus BN introduced can effectively restrict the diffusion of polysulfides via strong chemisorption with LiSnLi+…N,while the rGO substrate ensures smooth electron transfer for redox reaction.Therefore,through the integrated adsorption/catalysis,the shuttle effect is suppressed,the kinetics of redox reaction is enhanced,and the capacity decay is reduced.Using CoB/BN@rGO modified PP separator,the Li-S batteries with high initial capacity(1450 mAh g^(-1)at 0.35 mA cm^(-2))and long-cycle stability(700 cycles at 1.74 mA cm^(-2)with a decay rate of 0.032%per cycle)are achieved.This work provides a novel insight for the preparation of bifunctional catalysis with integrated structure for long-life Li-S batteries.展开更多
Smartcombination of manifold carbonaceous materials with admirable functionalities(like full of pores/functional groups,high specific surface area) is still a mainstream/preferential way to address knotty issues of po...Smartcombination of manifold carbonaceous materials with admirable functionalities(like full of pores/functional groups,high specific surface area) is still a mainstream/preferential way to address knotty issues of polysulfides dissolution/shuttling and poor electrical conductivity for S-based cathodes.However,extensive use of conductive carbon fillers in cell designs/technology would induce electrolytic overconsumption and thereby shelve high-energy-density promise of Li-S cells.To cut down carbon usage,we propose the incorporation of multi-functionalized NiFe2O4 quantum dots(QDs) as affordable additive substitutes.The total carbon content can be greatly curtailed from 26%(in traditional S/C cathodes) to a low/commercial mass ratio(~5%).Particularly,note that NiFe2O4 QDs additives own superb chemisorption interactions with soluble Li2Sn molecules and proper catalytic features facilitating polysulfide phase conversions and can also strengthen charge-transfer capability/redox kinetics of overall cathode systems.Benefiting from these intrinsic properties,such hybrid cathodes demonstrate prominent rate behaviors(decent capacity retention with ~526 mAh g^-1 even at 5 A g^-1) and stable cyclic performance in LiNO3-free electrolytes(only ~0.08% capacity decay per cycle in 500 cycles at 0.2 A g^-1).This work may arouse tremendous research interest in seeking other alternative QDs and offer an economical/more applicable methodology to construct low-carbon-content electrodes for practical usage.展开更多
The practical applications of lithium-sulfur(Li-S)battery have been greatly hindered by the severe polysulfide shuttle at the cathode and rampant lithium dendrite growth at the anode.One of the effective solutions dea...The practical applications of lithium-sulfur(Li-S)battery have been greatly hindered by the severe polysulfide shuttle at the cathode and rampant lithium dendrite growth at the anode.One of the effective solutions deals with concurrent management of both electrodes.Nevertheless,this direction remains in a nascent stage due to a lack of material selection and mechanism exploration.Herein,we devise a temperature-mediated direct chemical vapor deposition strategy to realize the controllable synthesis of three-dimensional boron/nitrogen dual-doped graphene(BNG)particulated architectures,which is employed as a light-weighted and multi-functional mediator for both electrodes in Li-S batteries.Benefiting from the“sulfiphilic”and“lithiophilic”features,the BNG modified separator not only enables boosted kinetics of polysulfide transformation to mitigate the shuttle effect but also endows uniform lithium deposition to suppress the dendritic growth.Theoretical calculations in combination with electro-kinetic tests and operando Raman analysis further elucidate the favorable sulfur and lithium electrochemistry of BNG at a molecular level.This work offers direct insight into the mediator design via controllable synthesis of graphene materials to tackle the fundamental challenges of Li-S batteries.展开更多
基金supported by the open research fund of Songshan Lake Materials Laboratory (2022SLABFN26)the National Natural Science Foundation of China (21773024)+1 种基金the Sichuan Science and Technology program (2020YJ0324,2020YJ0262)the Reformation and Development Funds for Local Region Universities from China Government in 2020 (ZCKJ 2020-11)。
文摘The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispersed Nb N quantum dots anchored on nitrogen-doped hollow carbon nanorods(NbN@NHCR)are elaborately developed as efficient Li PSs immobilizer and Li stabilizer for high-performance Li-S full batteries.Density functional theory(DFT)calculations and experimental characterizations demonstrate that the sulfiphilic and lithiophilic NbN@NHCR hybrid can not only efficiently immobilize the soluble Li PSs and facilitate diffusion-conversion kinetics for alleviating the shuttling effect,but also homogenize the distribution of Li+ions and regulate uniform Li deposition for suppressing Li-dendrite growth.As a result,the assembled Li-S full batteries(NbN@NHCR-S||Nb N@NHCR-Li)deliver excellent long-term cycling stability with a low decay rate of 0.031%per cycle over 1000 cycles at high rate of 2 C.Even at a high S loading of 5.8 mg cm^(-2)and a low electrolyte/sulfur ratio of 5.2μL mg^(-1),a large areal capacity of 6.2 mA h cm^(-2)can be achieved in Li-S pouch cell at 0.1 C.This study provides a new perspective via designing a dual-functional sulfiphilic and lithiophilic hybrid to address serious issues of the shuttle effect of S cathode and dendrite growth of Li anode.
基金supported by the Science and Technology Project of Jilin Provincial Education Department (JJKH20221160KJ)the Jilin Province Science and Technology Department (20230402059GH)the National Natural Science Foundation of China (22279014)。
文摘The commercialization of lithium-sulfur(Li-S)batteries faces several challenges,including poor conductivity,unexpected volume expansion,and continuous sulfur loss from the cathode due to redox shuttling.In this study,we introduce a novel polymer via a simple cross-linking between poly(ether-thioureas)(PETU)and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)as a bifunctio nal binder for Li-S batteries(devotes as"PPTU").Compared to polyvinylidene fluoride(PVDF),as-prepared PPTU exhibits significantly higher electrical conductivity,facilitating electrochemical reactions.Additionally,PPTU demonstrates effective adsorption of lithium polysulfides,leading to improved cycling stability by suppressing the shuttling effect.We investigate this behavior by monitoring morphological changes at the cell interface using synchrotron X-ray tomography.Cells with PPTU binders exhibit remarkable rate performance,desired reversibility,and excellent cycling stability even under stringent bending and twisting conditions.Our work represents promising progress in functional polymer binder development for Li-S batteries.
基金the support from National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(52222314)CNPC Innovation Fund(2021DQ02-1001)+2 种基金Liao Ning Revitalization Talents Program(XLYC1907144)Xinghai Talent Cultivation Plan(X20200303)Fundamental Research Funds for the Central Universities(DUT22JC02,DUT22LAB605)
文摘As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,as the key criterions for Li-S batteries'practical applications,still attract less attention.Herein,an aqueous multifunction binder(named PEI-TIC)is prepared via an easy and fast epoxy-amine ring-opening reaction(10 min),which can not only give the sulfur cathode a stable mechanical property,a strong chemical adsorption and catalytic conversion ability,but also a fire safety improvement.The Li-S batteries based on the PEI-TIC binder display a high discharge capacity(1297.8 mAh g^(-1)),superior rate performance(823.0 mAh g^(-1)at 2 C),and an ultralow capacity decay rate of 0.035%over more than 800 cycles.Even under 7.1 mg cm^(-2)S-loaded,the PEI-TIC electrode can also achieve a high areal capacity of 7.2 mA h g^(-1)and excellent cycling stability,confirming its application potential.Moreover,it is also noted that TG-FTIR test is performed for the first time to explore the flame-retardant mechanism of polymer binders.This work provides an economically and environmentally friendly binder for the practical application and inspires the exploration of the flame-retardant mechanism of all electrode components.
基金financial support from the National Natural Science Foundation of China(Grant Nos.51871188 and 51931006)the Fundamental Research Funds for the Central Universities of China(Xiamen University:Nos.20720200068,20720190007 and 20720220074)+2 种基金Guangdong Basic and Applied Basic Research Foundation(No.2021A1515010139)Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(HRTP-[2022]-22)the“Double-First Class”Foundation of Materials Intelligent Manufacturing Discipline of Xiamen University。
文摘The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,a bi-service host with Co-Fe binary-metal selenide quantum dots embedded in three-dimensional inverse opal structured nitrogen-doped carbon skeleton(3DIO FCSe-QDs@NC)is elaborately designed for both sulfur cathode and Li metal anode.The highly dispersed FCSe-QDs with superb adsorptive-catalytic properties can effectively immobilize the soluble Li PSs and improve diffusion-conversion kinetics to mitigate the polysulfide-shutting behaviors.Simultaneously,the 3D-ordered porous networks integrated with abundant lithophilic sites can accomplish uniform Li deposition and homogeneous Li-ion flux for suppressing the growth of dendrites.Taking advantage of these merits,the assembled Li-S full batteries with 3DIO FCSe-QDs@NC host exhibit excellent rate performance and stable cycling ability(a low decay rate of 0.014%over 2,000 cycles at 2C).Remarkably,a promising areal capacity of 8.41 mAh cm^(-2)can be achieved at the sulfur loading up to 8.50 mg cm^(-2)with an ultra-low electrolyte/sulfur ratio of 4.1μL mg^(-1).This work paves the bi-serve host design from systematic experimental and theoretical analysis,which provides a viable avenue to solve the challenges of both sulfur and Li electrodes for practical Li-S full batteries.
基金supported by the National Natural Science Foundation of China(51972184,22005169)the Key Basic Research Project of Shandong Province(ZR2019ZD49)+2 种基金the Natural Science Foundation of Shandong Province(ZR2020QB121)the Taishan Scholars Project of Shandong Provincethe Taishan Scholar Young Talent Program(tsqn201909114)。
文摘The lithium-sulfur(Li-S)battery,as one of the energy storage devices,has been in the limelight due to its high theoretical energy density.However,the poor redox kinetics and the"shuttle effect"of polysulfides severely restrict the use of Li-S batteries in practical applications.Herein,a novel bimetallic LaNiO_(3) functional material with high electrical conductivity and catalytic property is prepared to act as a high-efficiency polysulfide shuttling stopper.The three LaNiO_(3) samples with different physical/chemical characteristics are obtained by controlling the calcination temperature.In conjunction with the high electrical conductivity and excellent catalytic properties of the as-prepared materials,the appropriate chemisorption toward polysulfides offers great potential to enhance electrochemical stability for highperformance Li-S batteries.Particularly,the Li-S cell with the separator modified by such functional material gives a specific capacity of 658 mA h g^(-1) after 500 cycles at a high current density of 2 C.Even with high sulfur loading of 6.05 mg cm^(-2),the Li-S battery still exhibits an areal specific capacity of 2.81 m A h cm^(-2)after 150 cycles.This work paves a new avenue for the rational design of materials for separator modification in high-performance Li-S batteries.
基金supported by the National Natural Science Foundation of China(22179089)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_3245)support from Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies,Suzhou,China。
文摘An emerging practice in the realm of Li-S batteries lies in the employment of single-atom catalysts(SACs)as effective mediators to promote polysulfide conversion,but monometallic SACs affording isolated geometric dispersion and sole electronic configuration limit the catalytic benefits and curtail the cell performance.Here,we propose a class of dual-atom catalytic moieties comprising hetero-or homo-atomic pairs anchored on N-doped graphene(NG)to unlock the liquid–solid redox puzzle of sulfur,readily realizing Li-S full cell under high-rate-charging conditions.As for Fe-Ni-NG,in-depth experimental and theoretical analysis reveal that the hetero-atomic orbital coupling leads to altered energy levels,unique electronic structures,and varied Fe oxidation states in comparison with homo-atomic structures(FeFe-NG or Ni-Ni-NG).This would weaken the bonding energy of polysulfide intermediates and thus enable facile electrochemical kinetics to gain rapid liquid-solid Li_(2)S_(4)?Li_(2)S conversion.Encouragingly,a Li-S battery based on the S@Fe-Ni-NG cathode demonstrates unprecedented fast-charging capability,documenting impressive rate performance(542.7 mA h g^(-1)at 10.0 C)and favorable cyclic stability(a capacity decay of 0.016%per cycle over 3000 cycles at 10.0 C).This finding offers insights to the rational design and application of dual-atom mediators for Li-S batteries.
基金financial support from the National Natural Science Foundation of China(21878270,21878267,21922811,21978258 and 21961160742)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2019R01006)+3 种基金the Zhejiang Provincial Natural Science Foundation of China(LR19B060002)the Fundamental Research Funds for the Central Universities(2020XZZX002-09)the Startup Foundation for Hundred-Talent Program of Zhejiang Universitythe Zhejiang Key Laboratory of Marine Materials and Protective Technologies(2020K10)。
文摘Lithium-sulfur(Li-S)batteries with high theoretical energy density are promising advanced energy storage devices.However,shuttling of dissolute lithium polysulfide(LiPSs)and sluggish conversion kinetics impede their applications.Herein,single nickel(Ni)atoms on two-dimensional(2D)nitrogen(N)-doped carbon with Ni-N_(4)-O overcoordinated structure(SANi-N_(4)-O/NC)are prepared and firstly used as a sulfur host of Li-S batteries.Due to the efficient polysulfides traps and highly LiPSs conversion effect of SANi-N_(4)-O/NC,the electrochemical performance of Li-S batteries obviously improved.The batteries can well operate even under high sulfur loading(5.8 mg cm^(-2))and lean electrolyte(6.1μL mg^(-1))condition.Meanwhile,density functional theory(DFT)calculations demonstrate that Ni single atom’s active sites decrease the energy barriers of conversion reactions from Li_(2)S_(8)to Li2S due to the strong interaction between SANi-N_(4)-O/NC and LiPSs.Thus,the kinetic conversion of LiPSs was accelerated and the shuttle effect is suppressed on SANi-N_(4)-O/NC host.This study provides a new design strategy for a 2D structure with single-atom overcoordinated active sites to facilitate the fast kinetic conversion of LiPSs for Li-S cathode.
基金the support from National Outstanding Youth Science Fund (52222314)the CNPC Innovation Found (2021DQ02-1001)+2 种基金the Liao Ning Revitalization Talents Program (XLYC1907144)the Xinghai Talent Cultivation Plan (X20200303)the Fundamental Research Funds for the Central Universities (DUT22JC02,DUT22LAB605)。
文摘Sulfur-rich polymers have gained a great deal of attention as the next-generation active materials in lithium-sulfur(Li-S)batteries due to their low cost,environmental compatibility,naturally sulfur uniform dispersion,and distinctive structure covalently bonding with sulfur atoms.However,the poor electrical conductivity and undesirable additional shuttle effect still hinder the commercial application of sulfur-rich polymers.Herein,we report a flexible semi-immobilization strategy to prepare allylterminated hyperbranched poly(ethyleneimine)-functionalized reduced graphene oxide(A-PEI-EGO)as sulfur-rich copolymer backbone.The semi-immobilization strategy can effectively reconcile the demand for polymer skeleton and conductive substrates through forming quaternary ammonium groups and reducing oxygen-containing functional groups,resulting in enhanced skeleton adsorption capacity and substrate electronic conductivity,respectively.Furthermore,the stable covalent bonding connection based on polymer molecules(A-PEI)not only completely prevents the additional shuttle effect of lithiation organic molecules and even sulfur-rich oligomers,but provides more inverse vulcanization active sites.As a result,the as-prepared A-PEI-EGO-S cathodes display an initial discharge capacity of1338 m A h g^(-1)at a rate of 0.1 C and an outstanding cycling stability of 0.046%capacity decay per cycle over 600 cycles.Even under 6.2 mg cm^(-2)S-loaded and sparing electrolyte of 6μL mg^(-1),the A-PEI-EGO-S cathode can also achieve a superior cycling performance of 98%capacity retention after 60 cycles,confirming its application potential.
基金support from EPSRC-New Investigator Award 2020 (EP/V002260/1)The Faraday Institute-Battery Study and Seed Research Project (FIRG052)+2 种基金The Royal Society-International Exchanges 2021 Cost Share (NSFC)(IECNSFC211074)the China Scholarship Council (CSC, No. 201806130168)the International Postdoctoral Exchange Fellowship Program (Grant No. PC2022020)
文摘As the need for high-energy–density batteries continues to grow, lithium-sulfur(Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents.However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject.
基金supported by the National Natural Science Foundation of P.R.China(22001082)the Applied Science and Technology Planning Project of Guangdong Province,Guangzhou,China(2017B090917002)+5 种基金the Guangdong Basic and Applied Basic Research Fund Project(2019B1515120027)the Research and Development(R&D)Projects in Key Areas of Guangdong Province(2020B0101028005)the Guangdong Natural Science Foundation Project(No.2019A1515010841)the Guangdong Province International Science and Technology Cooperation Project(No.2019A050510038)the Guangzhou Science and Technology Association Young Talents Promotion Project(X20210201043)the Guangzhou Basic and Applied Basic Research Project(202102020624)。
文摘Lithium-sulfur batteries are severely restricted by low electronic conductivity of sulfur and Li_(2)S,shuttle effect,and slow conversion reaction of lithium polysulfides(LiPSs).Herein,we report a facile and highyield strategy for synthesizing dual-core single-atom catalyst(ZnCoN_(4)O_(2)/CN)with atomically dispersed nitrogen/oxygen-coordinated Zn-Co sites on carbon nanosheets.Based on density functional theory(DFT)calculations and LiPSs conversion catalytic ability,ZnCoN_(4)O_(2)/CN provides dual-atom sites of Zn and Co,which could facilitate Li^(+)transport and Li_(2)S diffusion,and catalyze LiPSs conversion more effectively than homonuclear bimetallic single-atom catalysts or their simple mixture and previously reported singleatom catalysts.Li-S cell with ZnCoN_(4)O_(2)/CN modified separator showed excellent rate performance(789.4 mA h g^(-1)at 5 C)and stable long cycle performance(0.05%capacity decay rate at 6C with 1000cycles,outperforming currently reported single atomic catalysts for LiPSs conversion.This work highlights the important role of metal active centers and provides a strategy for producing multifunctional dual-core single atom catalysts for high-performance Li-S cells.
基金supported by the Jilin Province Science and Technology Department Program(YDZJ202201ZYTS304)the Science and Technology Project of Jilin Provincial Education Department(JJKH20220428KJ)+3 种基金the Jilin Province Science and Technology Department Program(YDZJ202101ZYTS047)the National Natural Science Foundation of China(21905110,21905041,22279045,22102020)the Special foundation of Jilin Province Industrial Technology Research and Development(2019C042)the Fundamental Research Funds for the Central Universities(2412020FZ008)。
文摘Lithium sulfur batteries are regarded as a promising candidate for high-energy-density energy storage devices.However,the lithium metal anode in lithium-sulfur batteries encounters the problem of lithium dendrites and lithium metal consumption caused by polysulfide corrosion.Herein we design a dualfunction PMMA/PPC/LiNO3composite as an artificial solid electrolyte interphase(PMCN-SEI)to protect Li metal anode.This SEI offers multiple sites of C=O for polysulfide anchoring to constrain corrosion of Li metal anode.The lithiated polymer group and Li3N in PMCN-SEI can homogenize lithium-ion deposition behavior to achieve a dendrite-free anode.As a result,the PMCN-SEI protected Li metal anode enables the Li||Li symmetric batteries to maintain over 300 cycles(1300 h)at a capacity of 5 m Ah cm^(-2),corresponding to a cumulative capacity of 3.25 Ah cm^(-2).Moreover,Li-S batteries assembled with 20μm of Li metal anode(N/P=1.67)still deliver an initial capacity of 1166 m A h g-1at 0.5C.Hence,introducing polycarbonate polymer/inorganic composite SEI on Li provides a new solution for achieving the high energy density of Li-S batteries.
基金support by the National Natural Science Foundation of China(51802269,21773138)Fundamental Research Funds for the Central Universities(XDJK2019AA002)+1 种基金the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2018027)the innovation platform for academicians of Hainan province.
文摘Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,causing the electrolyte overconsumption,specific energy decline,and even safety hazards for battery devices.To build better cathodes,we propose to substitute carbons by In-doped SnO_(2)(ITO)nano ceramics that own three-in-one functionalities:1)using conductive ITO enables minimizing the total carbon content to an extremely low mass ratio(~3%)in cathodes,elevating the electrode tap density and averting the electrolyte overuse;2)polar ITO nanoclusters can serve as robust anchors toward Li polysulfide(LiPS)by electrostatic adsorption or chemical bond interactions;3)they offer catalysis centers for liquid–solid phase conversions of S-based actives.Also,such ceramics are intrinsically nonflammable,preventing S cathodes away from thermal runaway or explosion.These merits entail our configured cathodes with high tap density(1.54 g cm^(−3)),less electrolyte usage,good security for flame retardance,and decent Li-storage behaviors.With lean and LiNO_(3)-free electrolyte,packed full cells exhibit excellent redox kinetics,suppressed LiPS shuttling,and excellent cyclability.This may trigger great research enthusiasm in rational design of low-carbon and safer S cathodes.
基金supported by the National Natural Science Foundation of China (NSFC, No. 51522203, 51772040)Fok Ying Tung Education Foundation (No. 151047)+2 种基金the Recruitment Program of Global Youth ExpertsXinghai Scholarship of Dalian University of Technologythe Fundamental Research Funds for the Central Universities (No. DUT18LAB19)
文摘Use of metallic Li anode raises serious concerns on the safety and operational performance of Li-S batteries due to uncontrolled hazard of Li dendrite formation, which is difficultly eliminated as long as the metallic Li exists in the cells. Pairing lithium sulfide (Li2S) cathode with currently available metallic Lifree high-capacity anodes offers an alternative solution to this challenge. However, the performance of Li2S cathode is primarily restricted by high activation barrier upon initial charge, low active mass utilization and sluggish redox kinetics. Herein, a MXene-induced multifunctional collaborative interface is proposed to afford superb activity towards redox solid-liquid/liquid-liquid phase transformation, strong chemisorption, high conductivity and fast ionic/charge transport in high Li2S loading cathode. Applying collaborative interface effectively reduces initial voltage barrier of Li2S activation and regulates the kinetic behavior of redox polysulfide conversion. Therefore, stable operation of additive-free Li2S cathode with high areal capacities at high Li2S loading up to 9 mg cm^-2 can be achieved with less sacrifice of high capacity and rate capability in Li-S batteries. Rechargeable metallic Li-free batteries are successfully constructed by pairing this high-performance Li2S cathode with high-capacity metal oxide anodes, which delivers superior energy density to current Li-ion batteries.
文摘采用电化学法,在硫电极表面沉积一层聚(3,4–乙烯二氧噻吩)薄膜,并研究了相关锂–硫(Li-S)电池的电化学性能。结果表明,这种简单的电化学方法容易实现在整个硫电极表面制备一层致密、均匀、厚度可控的导电高分子薄膜,并且显著提高Li-S电池的循环稳定性。其中,薄膜电沉积500次时,其改性硫电极的初始放电比容量为955 m Ah/g,在放电电流密度为900 m A/g时,800次充放电循环后比容量为590 m Ah/g,即每个循环的容量损失率仅为0.047%。
基金supported by the Project of State Key Laboratory of Environment-Friendly Energy Materials(SWUST,China,Grant Nos.19FKSY16 and 18ZD320304)。
文摘Li-S batteries have been considered as one of advanced next-generation energy storage systems owing to their remarkable theoretical capacity(1672 m Ah g^(-1))and high energy density(2600 Wh kg^(-1)).However,critical issues,mainly pertaining to lithium polysulfide shuttle and slow sulfur reaction kinetics,have posed a fatal threat to the electrochemical performances of Li-S batteries.The situation is even worse for high sulfur-loaded and flexible cathodes,which are the essential components for practical Li-S batteries.In response,the use of metal compounds as electrocatalysts in Li-S systems have been confirmed as an effective strategy to date.Particularly,recent years have witnessed many progresses in phosphidesoptimized Li-S chemistry.This has been motivated by the superior electron conductivity and high electrocatalytic activity of phosphides.In this tutorial review,we offer a systematic summary of active metal phosphides as promoters for Li-S chemistry,aiming at helping to understanding the working mechanism of phosphide electrocatalysts and guiding the construction of advanced Li-S batteries.
基金supported by the National Natural Science Foundation of China(Nos.51672055,51972342,51872656,and 51702275)the Taishan Scholar Project of Shandong Province(ts20190922)+3 种基金the Key Basic Research Project of Natural Science Foundation of Shandong Province(ZR2019ZD51)the Xinjiang Tianshan Xuesong Project(2018XS28)the Scientific Research Program of the Higher Education Institution of Xinjiang(XJEDU2017S003)the Xinjiang Tianchi Doctoral Project。
文摘The development of lithium-sulfur batteries(LSBs)is restricted by their poor cycle stability and rate performance due to the low conductivity of sulfur and severe shuttle effect.Herein,an N,O co-doped graphene layered block(NOGB)with many dents on the graphene sheets is designed as effective sulfur host for high-performance LSB s.The sulfur platelets are physically confined into the dents and closely contacted with the graphene scaffold,ensuring structural stability and high conductivity.The highly doped N and O atoms can prevent the shuttle effect of sulfur species by strong chemical adsorption.Moreover,the micropores on the graphene sheets enable fast Li^+transport through the blocks.As a result,the obtained NOGB/S composite with 76 wt%sulfur content shows a high capacity of 1413 mAh g^-1 at 0.1 C,good rate performance of 433 mAh g^-1 at 10 C,and remarkable stability with 526 mAh g^-1 at after 1000 cycles at 1 C(average decay rate:0.038%per cycle).Our design provides a comprehensive route for simultaneously improving the conductivity,ion transport kinetics,and preventing the shuttle effect in LSBs.
基金supported by the National Natural Science Foundation of China(22078228)。
文摘Lithium-sulfur(Li-S)batteries are hampered by the infamous shuttle effect and slow redox kinetics,resulting in rapid capacity decay.Herein,a bifunctional catalysis CoB/BN@rGO with integrated structure and synergy effect between adsorption and catalysis is proposed to solve the above problems.The integrated CoB and BN are simultaneously and uniformly introduced on the rGO substrate through a one-step calcination strategy,applied to modify the cathode side of PP separator.The transition metal borides can catalyze the conversion of lithium polysulfides(Li_(2)Sn,n≥4),whereas the bond of B-S is too weak to absorb LPS.Thus BN introduced can effectively restrict the diffusion of polysulfides via strong chemisorption with LiSnLi+…N,while the rGO substrate ensures smooth electron transfer for redox reaction.Therefore,through the integrated adsorption/catalysis,the shuttle effect is suppressed,the kinetics of redox reaction is enhanced,and the capacity decay is reduced.Using CoB/BN@rGO modified PP separator,the Li-S batteries with high initial capacity(1450 mAh g^(-1)at 0.35 mA cm^(-2))and long-cycle stability(700 cycles at 1.74 mA cm^(-2)with a decay rate of 0.032%per cycle)are achieved.This work provides a novel insight for the preparation of bifunctional catalysis with integrated structure for long-life Li-S batteries.
基金financial supports from National Natural Science Foundation of China (51802269 and 21773138)Chongqing Natural Science Foundation (cstc2018jcyjAX0624)+1 种基金Fundamental Research Funds for the Central Universities (XDJK2019AA002)Venture & Innovation Support Program for Chongqing overseas returnees (cx2018027)。
文摘Smartcombination of manifold carbonaceous materials with admirable functionalities(like full of pores/functional groups,high specific surface area) is still a mainstream/preferential way to address knotty issues of polysulfides dissolution/shuttling and poor electrical conductivity for S-based cathodes.However,extensive use of conductive carbon fillers in cell designs/technology would induce electrolytic overconsumption and thereby shelve high-energy-density promise of Li-S cells.To cut down carbon usage,we propose the incorporation of multi-functionalized NiFe2O4 quantum dots(QDs) as affordable additive substitutes.The total carbon content can be greatly curtailed from 26%(in traditional S/C cathodes) to a low/commercial mass ratio(~5%).Particularly,note that NiFe2O4 QDs additives own superb chemisorption interactions with soluble Li2Sn molecules and proper catalytic features facilitating polysulfide phase conversions and can also strengthen charge-transfer capability/redox kinetics of overall cathode systems.Benefiting from these intrinsic properties,such hybrid cathodes demonstrate prominent rate behaviors(decent capacity retention with ~526 mAh g^-1 even at 5 A g^-1) and stable cyclic performance in LiNO3-free electrolytes(only ~0.08% capacity decay per cycle in 500 cycles at 0.2 A g^-1).This work may arouse tremendous research interest in seeking other alternative QDs and offer an economical/more applicable methodology to construct low-carbon-content electrodes for practical usage.
基金financially supported by the National Natural Science Foundation of China(51702225)the National Key Research and Development Program(2019YFA0708201)+3 种基金the Beijing Municipal Science and Technology Commission(Z161100002116020)the China Postdoctoral Science Foundation funded project(2020 M681704,2021 T140493)the support from Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies,Suzhou,Chinathe support from the Postdoctoral Research Foundation of Jiangsu Province。
文摘The practical applications of lithium-sulfur(Li-S)battery have been greatly hindered by the severe polysulfide shuttle at the cathode and rampant lithium dendrite growth at the anode.One of the effective solutions deals with concurrent management of both electrodes.Nevertheless,this direction remains in a nascent stage due to a lack of material selection and mechanism exploration.Herein,we devise a temperature-mediated direct chemical vapor deposition strategy to realize the controllable synthesis of three-dimensional boron/nitrogen dual-doped graphene(BNG)particulated architectures,which is employed as a light-weighted and multi-functional mediator for both electrodes in Li-S batteries.Benefiting from the“sulfiphilic”and“lithiophilic”features,the BNG modified separator not only enables boosted kinetics of polysulfide transformation to mitigate the shuttle effect but also endows uniform lithium deposition to suppress the dendritic growth.Theoretical calculations in combination with electro-kinetic tests and operando Raman analysis further elucidate the favorable sulfur and lithium electrochemistry of BNG at a molecular level.This work offers direct insight into the mediator design via controllable synthesis of graphene materials to tackle the fundamental challenges of Li-S batteries.