期刊文献+
共找到50,398篇文章
< 1 2 250 >
每页显示 20 50 100
Design strategies of performance-enhanced Se cathodes for Li-Se batteries and beyond 被引量:1
1
作者 Weiling Qiu Xiang Long Huang +5 位作者 Ye Wang Chi Feng Haining Ji Hua Kun Liu Shi Xue Dou Zhiming Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期528-546,I0013,共20页
Lithium-selenium(Li-Se)batteries are deemed as an emerging high energy density electrochemical energy storage system owing to their high specific capacity and volume capacity.Prior to their practicality,a series of cr... Lithium-selenium(Li-Se)batteries are deemed as an emerging high energy density electrochemical energy storage system owing to their high specific capacity and volume capacity.Prior to their practicality,a series of critical challenges from the Se cathode side need to be overcome including low reactivity of bulk Se,shuttle effect of intermediates,sluggish redox kinetics of polyselenides,and volume change etc.In this review,recent progress on design strategies of functional Se cathodes are comprehensively summarized and discussed.Following the significance and key challenges,various efficient functionalized strategies for Se cathodes are presented,encompassing covalent bonding,nanostructure construction,heteroatom doping,component hybridization,and solid solution formation.Specially,the universality of these functional strategies are successfully extended into Na-Se batteries,K-Se batteries,and Mg-Se batteries.At last,a brief summary is made and some perspectives are offered with the goal of guiding future research advances and further exploration of these strategies. 展开更多
关键词 Metal-selenium batteries Se cathodes CARBONS NANOSTRUCTURE Materials design
下载PDF
Synthesis and characterization of porous monodisperse carbon spheres/selenium composite for high-performance rechargeable Li-Se batteries
2
作者 Jun YAN Wei-fang LIU +2 位作者 Cheng CHEN Chen-hao ZHAO Kai-yu LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第9期1819-1827,共9页
In order to find the appropriate material to load selenium for higher performance of rechargeable Li-Se batteries,the resorcinol-formaldehyde resins derived monodisperse carbon spheres(RFCS)/Se composites were fabrica... In order to find the appropriate material to load selenium for higher performance of rechargeable Li-Se batteries,the resorcinol-formaldehyde resins derived monodisperse carbon spheres(RFCS)/Se composites were fabricated by the melting-diffusion method.The RFCS were obtained from initial carbonization of resorcinol-formaldehyde resins and subsequent KOH activation.Three kinds of samples of the RFCS/Se composites with different mass ratios were characterized by XRD,Raman spectroscopy,SEM,BET and EDS tests,which demonstrate that the samples with diverse mass fractions of selenium have distinct interior structure.The most suitable RFCS/Se composite is found to be the RFCS/Se-50 composite,which delivers a high reversible capacity of 643.9 mA·h/g after 100 cycles at current density of 0.2C. 展开更多
关键词 lithium.selenium batteries cathode material carbon sphere sol.gel process
下载PDF
NbN quantum dots anchored hollow carbon nanorods as efficient polysulfide immobilizer and lithium stabilizer for Li-S full batteries
3
作者 Fei Ma Zhuo Chen +9 位作者 Katam Srinivas Ziheng Zhang Yu Wu Dawei Liu Hesheng Yu Yue Wang Xinsheng Li Ming-qiang Zhu Qi Wu Yuanfu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期260-271,I0007,共13页
The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispers... The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispersed Nb N quantum dots anchored on nitrogen-doped hollow carbon nanorods(NbN@NHCR)are elaborately developed as efficient Li PSs immobilizer and Li stabilizer for high-performance Li-S full batteries.Density functional theory(DFT)calculations and experimental characterizations demonstrate that the sulfiphilic and lithiophilic NbN@NHCR hybrid can not only efficiently immobilize the soluble Li PSs and facilitate diffusion-conversion kinetics for alleviating the shuttling effect,but also homogenize the distribution of Li+ions and regulate uniform Li deposition for suppressing Li-dendrite growth.As a result,the assembled Li-S full batteries(NbN@NHCR-S||Nb N@NHCR-Li)deliver excellent long-term cycling stability with a low decay rate of 0.031%per cycle over 1000 cycles at high rate of 2 C.Even at a high S loading of 5.8 mg cm^(-2)and a low electrolyte/sulfur ratio of 5.2μL mg^(-1),a large areal capacity of 6.2 mA h cm^(-2)can be achieved in Li-S pouch cell at 0.1 C.This study provides a new perspective via designing a dual-functional sulfiphilic and lithiophilic hybrid to address serious issues of the shuttle effect of S cathode and dendrite growth of Li anode. 展开更多
关键词 Dual-functional host NbN quantum dots Shuttle effect Dendrite-free Li anode li-s full batteries
下载PDF
Ten-Minute Synthesis of a New Redox-Active Aqueous Binder for Flame-Retardant Li-S Batteries
4
作者 Tianpeng Zhang Borui Li +5 位作者 Zihui Song Wanyuan Jiang Siyang Liu Runyue Mao Xigao Jian Fangyuan Hu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期48-57,共10页
As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,a... As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,as the key criterions for Li-S batteries'practical applications,still attract less attention.Herein,an aqueous multifunction binder(named PEI-TIC)is prepared via an easy and fast epoxy-amine ring-opening reaction(10 min),which can not only give the sulfur cathode a stable mechanical property,a strong chemical adsorption and catalytic conversion ability,but also a fire safety improvement.The Li-S batteries based on the PEI-TIC binder display a high discharge capacity(1297.8 mAh g^(-1)),superior rate performance(823.0 mAh g^(-1)at 2 C),and an ultralow capacity decay rate of 0.035%over more than 800 cycles.Even under 7.1 mg cm^(-2)S-loaded,the PEI-TIC electrode can also achieve a high areal capacity of 7.2 mA h g^(-1)and excellent cycling stability,confirming its application potential.Moreover,it is also noted that TG-FTIR test is performed for the first time to explore the flame-retardant mechanism of polymer binders.This work provides an economically and environmentally friendly binder for the practical application and inspires the exploration of the flame-retardant mechanism of all electrode components. 展开更多
关键词 3D cross-linked network environmentally friendly flame retardant li-s batteries multifunction binder
下载PDF
Dual-single-atoms of Pt-Co boost sulfur redox kinetics for ultrafast Li-S batteries 被引量:1
5
作者 Hanyan Wu Xuejie Gao +7 位作者 Xinyang Chen Weihan Li Junjie Li Lei Zhang Yang Zhao Ming Jiang Runcang Sun Xueliang Sun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期53-63,共11页
Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetic... Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetics,the sulfur redox kinetics for Li-S batteries is still not ultrafast.Herein,in this work,a catalyst with dual-single-atom Pt-Co embedded in N-doped carbon nanotubes(Pt&Co@NCNT)was proposed by the atomic layer deposition method to suppress the shuttle effect and synergistically improve the interconversion kinetics from polysulfides to Li_(2)S.The X-ray absorption near edge curves indicated the reversible conversion of Li_(2)Sx on the S/Pt&Co@NCNT electrode.Meanwhile,density functional theory demonstrated that the Pt&Co@NCNT promoted the free energy of the phase transition of sulfur species and reduced the oxidative decomposition energy of Li_(2)S.As a result,the batteries assembled with S/Pt&Co@NCNT electrodes exhibited a high capacity retention of 80%at 100 cycles at a current density of 1.3 mA cm^(−2)(S loading:2.5 mg cm^(−2)).More importantly,an excellent rate performance was achieved with a high capacity of 822.1 mAh g^(−1) at a high current density of 12.7 mA cm^(−2).This work opens a new direction to boost the sulfur redox kinetics for ultrafast Li-S batteries. 展开更多
关键词 DFT calculation dual-single-atoms of Pt-Co fast li-sulfur batteries sulfur redox kinetics XANES analysis
下载PDF
Configuring single-layer MXene nanosheet onto natural wood fiber via C-Ti-C covalent bonds for high-stability Li-S batteries
6
作者 Yangyang Chen Yu Liao +5 位作者 Ying Wu Lei Li Zhen Zhang Sha Luo Yiqiang Wu Yan Qing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期701-711,I0016,共12页
Lithium-sulfur batteries(LSBs)are considered promising candidates for next-generation battery technologies owing to their outstanding theoretical energy density and cost-effectiveness.However,the low conductivity and ... Lithium-sulfur batteries(LSBs)are considered promising candidates for next-generation battery technologies owing to their outstanding theoretical energy density and cost-effectiveness.However,the low conductivity and polysulfide shuttling effect of S cathodes severely hamper the practical performance of LSBs.Herein,in situ-generated single layer MXene nanosheet/hierarchical porous carbonized wood fiber(MX/PCWF)composites are prepared via a nonhazardous eutectic activation strategy coupled with pyrolysis-induced gas diffusion.The unique architecture,wherein single layer MXene nanosheets are constructed on carbonized wood fiber walls,ensures rapid polysulfide conversion and continuous electron transfer for redox reactions.The C-Ti-C bonds formed between MXene and PCWF can considerably expedite the conversion of polysulfides,effectively suppressing the shuttle effect.An impressive capacity of 1301.1 m A h g^(-1)at 0.5 C accompanied by remarkable stability is attained with the MX/PCWF host,as evidenced by the capacity maintenance of 722.6 m A h g^(-1)after 500 cycles.Notably,the MX/PCWF/S cathode can still deliver a high capacity of 886.8 m A h g^(-1)at a high S loading of 5.6 mg cm^(-2).The construction of two-dimensional MXenes on natural wood fiber walls offers a competitive edge over S-based cathode materials and demonstrates a novel strategy for developing high-performance batteries. 展开更多
关键词 Lithium-sulfur batteries S cathodes MXene nanosheets Wood fiber C-Ti-C bonds
下载PDF
Electrochemical Realization of 3D Interconnected MoS_(3)/PPy Nanowire Frameworks as Sulfur-Equivalent Cathode Materials for Li-S Batteries
7
作者 Hongtao Yu Andreas Siebert +9 位作者 Shilin Mei Raul Garcia-Diez Roberto Félix Ting Quan Yaolin Xu Johannes Frisch Regan G.Wilks Marcus Bär Chun Pei Yan Lu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期9-17,共9页
The development of freestanding and binder-free electrode is an effective approach to perform the inherent capacity of active materials and promote the mechanism study by minimizing the interference from additives.Her... The development of freestanding and binder-free electrode is an effective approach to perform the inherent capacity of active materials and promote the mechanism study by minimizing the interference from additives.Herein,we construct a freestanding cathode composed of MoS_(3)/PPy nanowires(NWs)deposited on porous nickel foam(NF)(MoS_(3)/PPy/NF)through electrochemical methods,which can work efficiently as sulfur-equivalent cathode material for Li-S batteries.The structural stability of the MoS_(3)/PPy/NF cathode is greatly enhanced due to its significant tolerance to the volume expansion of MoS_(3)during the lithiation process,which we ascribe to the flexible 3D framework of PPy NWs,leading to superior cycling performance compared to the bulk-MoS_(3)/NF reference.Eliminating the interference of binder and carbon additives,the evolution of the chemical and electronic structure of Mo and S species during the discharge/charge was studied by X-ray absorption near-edge spectroscopy(XANES).The formation of lithium polysulfides was excluded as the driving cathode reaction mechanism,suggesting the great potential of MoS_(3)as a promising sulfur-equivalent cathode material to evade the shuttle effect for Li-S batteries.The present study successfully demonstrates the importance of structural design of freestanding electrode enhancing the cycling performances and revealing the corresponding mechanisms. 展开更多
关键词 3D-Network ELECTROCHEMICAL lithium-sulfur battery MoS_(3) PPY
下载PDF
Sulfhydryl-functionalized COF-based electrolyte strengthens chemical affinity toward polysulfides in quasi-solid-state Li-S batteries
8
作者 Linnan Bi Jie Xiao +9 位作者 Yaochen Song Tianrui Sun Mingkai Luo Yi Wang Peng Dong Yingjie Zhang Yao Yao Jiaxuan Liao Sizhe Wang Shulei Chou 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期221-234,共14页
For lithium-sulfur batteries(Li-S batteries),a high-content electrolyte typically can exacerbate the shuttle effect,while a lean electrolyte may lead to decreased Li-ion conductivity and reduced catalytic conversion e... For lithium-sulfur batteries(Li-S batteries),a high-content electrolyte typically can exacerbate the shuttle effect,while a lean electrolyte may lead to decreased Li-ion conductivity and reduced catalytic conversion efficiency,so achieving an appropriate electrolyte-to-sulfur ratio(E/S ratio)is essential for improving the battery cycling efficiency.A quasi-solid electrolyte(COF-SH@PVDF-HFP)with strong adsorption and high catalytic conversion was constructed for in situ covalent organic framework(COF)growth on highly polarized polyvinylidene fluoride-hexafluoropropylene(PVDF-HFP)fibers.COF-SH@PVDF-HFP enables efficient Li-ion conductivity with low-content liquid electrolyte and effectively suppresses the shuttle effect.The results based on in situ Fourier-transform infrared,in situ Raman,UV–Vis,X-ray photoelectron,and density functional theory calculations confirmed the high catalytic conversion of COF-SH layer containing sulfhydryl and imine groups for the lithium polysulfides.Lithium plating/stripping tests based on Li/COF-SH@PVDF-HFP/Li show excellent lithium compatibility(5 mAh cm^(-2) for 1400 h).The assembled Li-S battery exhibits excellent rate(2 C 688.7 mAh g^(-1))and cycle performance(at 2 C of 568.8 mAh g^(-1) with a capacity retention of 77.3%after 800 cycles).This is the first report to improve the cycling stability of quasi-solid-state Li-S batteries by reducing both the E/S ratio and the designing strategy of sulfhydryl-functionalized COF for quasi-solid electro-lytes.This process opens up the possibility of the high performance of solid-state Li-S batteries. 展开更多
关键词 lithium-sulfur batteries low electrolyte-to-sulfur ratio polysulfide shuttle PVDF-HFP/COF
下载PDF
Conversion of LiPSs Accelerated by Pt-Doped Biomass-Derived Hyphae Carbon Nanobelts as Self-Supporting Hosts for Long-Lifespan Li-S Batteries
9
作者 Fengfeng Han Liwen Fan +4 位作者 Xinzhi Ma Huiqing Lu Lu Li Xitian Zhang Lili Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期49-58,共10页
Rechargeable Li-S batteries(LSBs)are emerging as an important alternative to lithium-ion batteries(LIBs),owing to their high energy densities and low cost;yet sluggish redox kinetics of LiPSs results in inferior cycle... Rechargeable Li-S batteries(LSBs)are emerging as an important alternative to lithium-ion batteries(LIBs),owing to their high energy densities and low cost;yet sluggish redox kinetics of LiPSs results in inferior cycle life.Herein,we prepared multifunctional self-supporting hyphae carbon nanobelt(HCNB)as hosts by carbonization of hyphae balls of Rhizopus,which could increase the S loading of the cathode without sacrificing reaction kinetics.Trace platinum(Pt)nanoparticles were introduced into HCNBs(PtHCNBs)by ion-beam sputtering deposition.Based on the X-ray photoelectron spectroscopy analyses,the introduced trace Pt regulated the local electronic states of heteroatoms in HCNBs.Electrochemical kinetics investigation combined with operando Raman measurements revealed the accelerated reaction mechanics of sulfur species.Benefiting from the synergistic catalytic effect and the unique structures,the as-prepared PtHCNB/MWNCT/S cathodes delivered a stable capacity retention of 77%for 400 cycles at 0.5 C with a sulfur loading of 4.6 mg cm^(-2).More importantly,remarkable cycling performance was achieved with an high areal S loading of 7.6 mg cm^(-2).This finding offers a new strategy to prolong the cycle life of LSBs. 展开更多
关键词 high areal capacity high S loading hyphae carbon nanobelt lithium-sulfur battery operando Raman
下载PDF
Engineering Strategies for Suppressing the Shuttle Effect in Lithium–Sulfur Batteries 被引量:2
10
作者 Jiayi Li Li Gao +7 位作者 Fengying Pan Cheng Gong Limeng Sun Hong Gao Jinqiang Zhang Yufei Zhao Guoxiu Wang Hao Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期187-221,共35页
Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-elect... Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries. 展开更多
关键词 Shuttle effect Designed strategies li-s battery Lithium polysulfides
下载PDF
Chlorine-rich lithium argyrodites enables superior performances for solid-state Li-Se batteries at wide temperature range 被引量:1
11
作者 Jin-Yan Lin Shuai Chen +10 位作者 Jia-Yang Li Dian Yu Xiang-Ling Xu Chuang Yu Shao-Qing Chen Xue-Fei Miao Lin-Feng Peng Chao-Chao Wei Chong-Xuan Liu Shi-Jie Cheng Jia Xie 《Rare Metals》 SCIE EI CAS CSCD 2022年第12期4065-4074,共10页
All-solid-state Li-Se battery shows great potential as a candidate for next-generation energy storage devices due to its high energy density and safety.However,the low ionic conductivity of the solid electrolytes and ... All-solid-state Li-Se battery shows great potential as a candidate for next-generation energy storage devices due to its high energy density and safety.However,the low ionic conductivity of the solid electrolytes and large volume changes of Se active materials are two of the major issues that limit its applications.Herein,a simple solid-state reaction method is applied to synthesize chlorine-rich argyrodite Li_(5.5)PS_(4.5)CI_(1.5)electrolyte with high conductivity of 6.25 mS·cm^(-1)at room temperature.Carbon nanotube(CNT)is introduced as the host for Se to obtain Se/CNT composite with both enhanced electronic conductivity and lower volume expansion during the electrochemical reaction process.All-solid-state Li-Se battery using Li_(5.5)PS_(4.5)CI_(1.5)as solid electrolyte combined with Se/CNT cathode and Li-In anode shows a discharge capacity of 866 mAh·g-1for the 2nd cycle under0.433 mA·cm-2at room temperature.Moreover,the assembled battery delivers a high discharge capacity of1026 mAh·g^(-1)for the 2nd cycle when cycled at the same current density at 60℃and maintains a discharge capacity of 380 mAh·g^(-1)after 150 cycles.Owing to the high Li-ion conductivity of Li_(5.5)PS_(4.5)CI_(1.5)electrolyte,the assembled battery displays a high discharge capacity of 344 mAh·g^(-1)under 0.113 mA·cm^(-2)at-20℃C and remains 66.1%after200 cycles.In addition,this all-solid-state Li-Se battery shows ultralong cycling performances up to 1000 cycles under 0.433 mA·cm^(-2)at-20℃.This work offers the design clue to fabricate the all-solid-state Li-Se battery workable at different operating temperatures with an ultralong cycling life. 展开更多
关键词 Lithium argyrodite Chlorine-rich All-solidstate li-se batteries Operating temperatures Long cycling performances
原文传递
A review of electrospun separators for lithium-based batteries: Progress and application prospects
12
作者 Xiangru Sun Ying Zhou +6 位作者 Dejun Li Kai Zhao Liqun Wang Peiran Tan Hongyang Dong Yueming Wang Ji Liang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期109-155,共47页
Due to the limitations of the raw materials and processes involved,polyolefin separators used in commercial lithium-ion batteries(LIBs)have gradually failed to meet the increasing requirements of high-end batteries in... Due to the limitations of the raw materials and processes involved,polyolefin separators used in commercial lithium-ion batteries(LIBs)have gradually failed to meet the increasing requirements of high-end batteries in terms of energy density,power density,and safety.Hence,it is very important to develop next-generation separators for advanced lithium(Li)-based recharge-able batteries including LIBs and Li-S batteries.Nonwoven nanofiber membranes fabricated via electrospinning technology are highly attractive candidates for high-end separators due to their simple processes,low-cost equipment,controllable microporous structure,wide material applicability,and availability of multiple functions.In this review,the electrospinning technologies for separators are reviewed in terms of devices,process and environment,and polymer solution systems.Furthermore,strategies toward the improvement of electrospun separators in advanced LIBs and Li-S batteries are presented in terms of the compositions and the structure of nanofibers and separators.Finally,the challenges and prospects of electrospun separators in both academia and industry are proposed.We anticipate that these systematic discussions can provide information in terms of commercial applications of electrospun separators and offer new perspectives for the design of functional electrospun separators for advanced Li-based batteries. 展开更多
关键词 ELECTROSPINNING Li-metal batteries li-s batteries lithium-ion batteries SEPARATOR
下载PDF
Recent Advances in Aqueous Zn||MnO_(2)Batteries 被引量:1
13
作者 Chuan Li Rong Zhang +3 位作者 Huilin Cui Yanbo Wang Guojin Liang Chunyi Zhi 《Transactions of Tianjin University》 EI CAS 2024年第1期27-39,共13页
Recently,rechargeable aqueous zinc-based batteries using manganese oxide as the cathode(e.g.,MnO_(2))have gained attention due to their inherent safety,environmental friendliness,and low cost.Despite their potential,a... Recently,rechargeable aqueous zinc-based batteries using manganese oxide as the cathode(e.g.,MnO_(2))have gained attention due to their inherent safety,environmental friendliness,and low cost.Despite their potential,achieving high energy density in Zn||MnO_(2)batteries remains challenging,highlighting the need to understand the electrochemical reaction mechanisms underlying these batteries more deeply and optimize battery components,including electrodes and electrolytes.This review comprehensively summarizes the latest advancements for understanding the electrochemistry reaction mechanisms and designing electrodes and electrolytes for Zn||MnO_(2)batteries in mildly and strongly acidic environments.Furthermore,we highlight the key challenges hindering the extensive application of Zn||MnO_(2)batteries,including high-voltage requirements and areal capacity,and propose innovative solutions to overcome these challenges.We suggest that MnO_(2)/Mn^(2+)conversion in neutral electrolytes is a crucial aspect that needs to be addressed to achieve high-performance Zn||MnO_(2)batteries.These approaches could lead to breakthroughs in the future development of Zn||MnO_(2)batteries,off ering a more sustainable,costeff ective,and high-performance alternative to traditional batteries. 展开更多
关键词 Aqueous Zn||MnO_(2)batteries Zinc-ion batteries Zinc batteries MnO_(2)
下载PDF
Tungsten oxide/nitrogen-doped carbon nanotubes composite catalysts for enhanced redox kinetics in lithium-sulfur batteries
14
作者 Deqing He Zihao Xie +2 位作者 Qian Yang Wei Wang Chao Su 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期58-67,共10页
The sluggish redox kinetics of polysulfides in lithium-sulfur(Li-S)batteries are a significant obstacle to their widespread adoption as energy storage devices.However,recent studies have shown that tungsten oxide(WO_(... The sluggish redox kinetics of polysulfides in lithium-sulfur(Li-S)batteries are a significant obstacle to their widespread adoption as energy storage devices.However,recent studies have shown that tungsten oxide(WO_(3))can facilitate the conversion kinetics of polysulfides in Li-S batteries.Herein,we fabricated host materials for sulfur using nitrogen-doped carbon nanotubes(N-CNTs)and WO_(3).We used low-cost components and simple procedures to overcome the poor electrical conductivity that is a disadvantage of metal oxides.The composites of WO_(3) and N-CNTs(WO_(3)/N-CNTs)create a stable framework structure,fast ion diffusion channels,and a 3D electron transport network during electrochemical reaction processes.As a result,the WO_(3)/N-CNT-Li2S6 cathode demonstrates high initial capacity(1162 mA·h·g^(-1) at 0.5℃),excellent rate performance(618 mA·h·g^(-1) at 5.5℃),and a low capacity decay rate(0.093%up to 600 cycles at 2℃).This work presents a novel approach for preparing tungsten oxide/carbon composite catalysts that facilitate the redox kinetics of polysulfide conversion. 展开更多
关键词 li-s batteries Composites Ion diffusion channels 3D electron transport network Redox kinetics
下载PDF
Inherent thermal-responsive strategies for safe lithium batteries 被引量:2
15
作者 Jia-Xin Guo Chang Gao +9 位作者 He Liu Feng Jiang Zaichun Liu Tao Wang Yuan Ma Yiren Zhong Jiarui He Zhi Zhu Yuping Wu Xin-Bing Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期519-534,I0012,共17页
Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and ele... Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and electrodes as main components of lithium batteries strongly affect the occurrence of safety accidents.Responsive materials,which can respond to external stimuli or environmental change,have triggered extensive attentions recently,holding great promise in facilitating safe and smart batteries.This review thoroughly discusses recent advances regarding the construction of high-safety lithium batteries based on internal thermal-responsive strategies,together with the corresponding changes in electrochemical performance under external stimulus.Furthermore,the existing challenges and outlook for the design of safe batteries are presented,creating valuable insights and proposing directions for the practical implementation of safe lithium batteries. 展开更多
关键词 Lithium battery Thermal safety Thermal runaway Thermal-responsive
下载PDF
Mechanism of internal thermal runaway propagation in blade batteries 被引量:1
16
作者 Xuning Feng Fangshu Zhang +3 位作者 Wensheng Huang Yong Peng Chengshan Xu Minggao Ouyang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期184-194,I0005,共12页
Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propaga... Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell.The results showed that the internal thermal runaway could propagate for up to 272 s,which is comparable to that of a traditional battery module.The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s^(-1),depending on both the electrolyte content and high-temperature gas diffusion.In the early stages of thermal runaway,the electrolyte participated in the reaction,which intensified the thermal runaway and accelerated its propagation.As the battery temperature increased,the electrolyte evaporated,which attenuated the acceleration effect.Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer.The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%.We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%-17.06%.Finally,the temperature rate curve was analyzed,and a three-stage mechanism for internal thermal runaway propagation was proposed.In Stage I,convective heat transfer from electrolyte evaporation locally increased the temperature to 100℃.In Stage II,solid heat transfer locally increases the temperature to trigger thermal runaway.In StageⅢ,thermal runaway sharply increases the local temperature.The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design. 展开更多
关键词 Lithium-ion battery Blade battery Thermal runaway Internal thermal runaway propagation
下载PDF
Progress,challenges,and prospects of spent lithium-ion batteries recycling:A review 被引量:3
17
作者 Pengwei Li Shaohua Luo +7 位作者 Lin Zhang Qiuyue Liu Yikai Wang Yicheng Lin Can Xu Jia Guo Peam Cheali Xiaoning Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期144-171,I0005,共29页
The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,batter... The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization. 展开更多
关键词 Spent li-ion batteries RECYCLE Direct regeneration High-value conversion Functional materials
下载PDF
Design,preparation,application of advanced array structured materials and their action mechanism analyses for high performance lithium-sulfur batteries
18
作者 Nanping Deng Xiaofan Feng +7 位作者 Yongbing Jin Zhaozhao Peng Yang Feng Ying Tian Yong Liu Lu Gao Weimin Kang Bowen Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期266-303,I0007,共39页
Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme... Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB. 展开更多
关键词 Array structured materials Preparation methods and structural designs Action mechanism analyses Advanced li-s batteries Excellent electrochemical performances and safety
下载PDF
VSe_(2)/V_(2)C heterocatalyst with built-in electric field for efficient lithium-sulfur batteries:Remedies polysulfide shuttle and conversion kinetics
19
作者 Yanwei Lv Lina Bai +7 位作者 Qi Jin Siyu Deng Xinzhi Ma Fengfeng Han Juan Wang Lirong Zhang Lili Wu Xitian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期397-409,I0010,共14页
Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriou... Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries. 展开更多
关键词 li-s battery Shuttle effect Separator modifier VSe_(2)/V_(2)C heterostructure Built-in electric field
下载PDF
Dual-Functional Lithiophilic/Sulfiphilic Binary-Metal Selenide Quantum Dots Toward High-Performance Li-S Full Batteries 被引量:4
20
作者 Youzhang Huang Liang Lin +6 位作者 Yinggan Zhang Lie Liu Baisheng Sa Jie Lin Laisen Wang Dong-Liang Peng Qingshui Xie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期169-186,共18页
The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,... The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,a bi-service host with Co-Fe binary-metal selenide quantum dots embedded in three-dimensional inverse opal structured nitrogen-doped carbon skeleton(3DIO FCSe-QDs@NC)is elaborately designed for both sulfur cathode and Li metal anode.The highly dispersed FCSe-QDs with superb adsorptive-catalytic properties can effectively immobilize the soluble Li PSs and improve diffusion-conversion kinetics to mitigate the polysulfide-shutting behaviors.Simultaneously,the 3D-ordered porous networks integrated with abundant lithophilic sites can accomplish uniform Li deposition and homogeneous Li-ion flux for suppressing the growth of dendrites.Taking advantage of these merits,the assembled Li-S full batteries with 3DIO FCSe-QDs@NC host exhibit excellent rate performance and stable cycling ability(a low decay rate of 0.014%over 2,000 cycles at 2C).Remarkably,a promising areal capacity of 8.41 mAh cm^(-2)can be achieved at the sulfur loading up to 8.50 mg cm^(-2)with an ultra-low electrolyte/sulfur ratio of 4.1μL mg^(-1).This work paves the bi-serve host design from systematic experimental and theoretical analysis,which provides a viable avenue to solve the challenges of both sulfur and Li electrodes for practical Li-S full batteries. 展开更多
关键词 Dual-functional host Fe_(2)CoSe_(4)quantum dots Shuttle effect Dendrite-free Li anode li-s full batteries
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部