Lithium ferrite nanoparticles were synthesized by a sol-gel auto-combustion method. For prepared samples, the nanograins were increased with increasing the annealing temperature. Positron annihilation lifetime spectro...Lithium ferrite nanoparticles were synthesized by a sol-gel auto-combustion method. For prepared samples, the nanograins were increased with increasing the annealing temperature. Positron annihilation lifetime spectroscopy (PALS) was used to study defects at different sites for nanograins Li-ferrites. The analysis of the PAL spectrum indicated two lifetime components τ1 and τ2 for the annihilation of the positrons, and their corresponding relative intensities I1% and I2%. For nanoparticles Li-ferrite there are correlations between: 1) I2, τ2, annealing temperature and the total porosity (Pt) with the grain size;2) I1, μi, Ms and the homogeneity with grain size.展开更多
文摘Lithium ferrite nanoparticles were synthesized by a sol-gel auto-combustion method. For prepared samples, the nanograins were increased with increasing the annealing temperature. Positron annihilation lifetime spectroscopy (PALS) was used to study defects at different sites for nanograins Li-ferrites. The analysis of the PAL spectrum indicated two lifetime components τ1 and τ2 for the annihilation of the positrons, and their corresponding relative intensities I1% and I2%. For nanoparticles Li-ferrite there are correlations between: 1) I2, τ2, annealing temperature and the total porosity (Pt) with the grain size;2) I1, μi, Ms and the homogeneity with grain size.