Direct recycling is a novel approach to overcoming the drawbacks of conventional lithium-ion battery(LIB)recycling processes and has gained considerable attention from the academic and industrial sectors in recent yea...Direct recycling is a novel approach to overcoming the drawbacks of conventional lithium-ion battery(LIB)recycling processes and has gained considerable attention from the academic and industrial sectors in recent years.The primary objective of directly recycling LIBs is to efficiently recover and restore the active electrode materials and other components in the solid phase while retaining electrochemical performance.This technology's advantages over traditional pyrometallurgy and hydrometallurgy are costeffectiveness,energy efficiency,and sustainability,and it preserves the material structure and morphology and can shorten the overall recycling path.This review extensively discusses the advancements in the direct recycling of LIBs,including battery sorting,pretreatment processes,separation of cathode and anode materials,and regeneration and quality enhancement of electrode materials.It encompasses various approaches to successfully regenerate high-value electrode materials and streamlining the recovery process without compromising their electrochemical properties.Furthermore,we highlight key challenges in direct recycling when scaled from lab to industries in four perspectives:(1)battery design,(2)disassembling,(3)electrode delamination,and(4)commercialization and sustainability.Based on these challenges and changing market trends,a few strategies are discussed to aid direct recycling efforts,such as binders,electrolyte selection,and alternative battery designs;and recent transitions and technological advancements in the battery industry are presented.展开更多
The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,batter...The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization.展开更多
The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant c...The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant challenges from environmental,economic,and resource management perspectives.This review paper focuses on the pyrometallurgy-based recycling process of lithium-ion batteries,exploring the fundamental understanding of this process and the importance of its optimization.Centering on the high energy consumption and emission gas issues of the pyrometallurgical recycling process,we systematically analyzed the capital-intensive nature of this process and the resulting technological characteristics.Furthermore,we conducted an in-depth discussion on the future research directions to overcome the existing technological barriers and limitations.This review will provide valuable insights for researchers and industry stakeholders in the battery recycling field.展开更多
Developing single-crystalline Ni-rich cathodes is an effective strategy to improve the safety and cycle life of Li-ion batteries(LIBs).However,the easy-to-loss of Li and O in high-temperature lithiation results in uns...Developing single-crystalline Ni-rich cathodes is an effective strategy to improve the safety and cycle life of Li-ion batteries(LIBs).However,the easy-to-loss of Li and O in high-temperature lithiation results in unsatisfactory ordered layered structure and stoichiometry.Herein,we demonstrate the synthesis of highly-ordered and fully-stoichiometric single-crystalline LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)cathodes by the regulation of pre-lithiation kinetics.The well-balanced pre-lithiation kinetics have been proved to greatly improve the proportion of layered phase in the intermediate by inhibiting the formation of metastable spinel phase,which promoted the rapid transformation of the intermediate into highly-ordered layered SC-NCM83 in the subsequent lithiation process.After coating a layer of Li_(2)O–B_(2)O_(3),the resultant cathodes deliver superior cycling stability with 90.9%capacity retention at 1C after 300 cycles in pouch-type full batteries.The enhancement mechanism has also been clarified.These findings exhibit fundamental insights into the pre-lithiation kinetics process for guiding the synthesis of high-quality singlecrystalline Ni-rich cathodes.展开更多
Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to t...Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.展开更多
Lithium-ion batteries(LIBs)containing graphite as anode material and LiCoO_(2),LiMn_(2)O_(4),and LiNi_(x)Mn_(y)Co_(z)O_(2) as cathode materials are the most used worldwide because of their high energy density,capacita...Lithium-ion batteries(LIBs)containing graphite as anode material and LiCoO_(2),LiMn_(2)O_(4),and LiNi_(x)Mn_(y)Co_(z)O_(2) as cathode materials are the most used worldwide because of their high energy density,capacitance,durability,and safety.However,such widespread use implies the generation of large amounts of electronic waste.It is estimated that more than 11 million ton of LIBs waste will have been generated by 2030.Battery recycling can contribute to minimizing environmental contamination and reducing production costs through the recovery of high-value raw materials such as lithium,cobalt,and nickel.The most common processes used to recycle spent LIBs are pyrometallurgical,biometallurgical,and hydrometallurgical.Given the current scenario,it is necessary to develop environmentally friendly methods to recycle batteries and synthesize materials with multiple technological applications.This study presents a review of industrial and laboratory processes for recycling spent LIBs and producing materials that can be used in new batteries,energy storage devices,electrochemical sensors,and photocatalytic reactions.展开更多
This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recyclin...This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recycling method that directly produces CAM precursors from LIB leachate,is explored.This process encompasses six key steps,including pretreatment,leaching,purification,adjustment of metal concentrations,precursor synthesis,and sintering.The review also investigates the potential introduction of impurity elements during CAM resynthesis and provides tolerance levels for these impurities based on thorough reference analysis.Additionally,it addresses challenges related to the commercialization of the resynthesis process.Notably,this review represents the first comprehensive assessment of CAM resynthesis,including the systematic evaluation of 12 impurity elements(Fe,Li,Al,Cu,C,P,F,Na,Cl,S,Mg,and Zn).Overall,this comprehensive review is poised to support the commercial development of resynthesized CAMs by offering valuable guidelines for managing impurities and streamlining the purification process.展开更多
The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recyc...The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recycling of LIBs at the end of their life.Herein,we describe a froth flotation-based process to recycle graphite—the predominant active material for the negative electrode—from spent LIBs and investigate its reuse in newly assembled LIBs.It has been found that the structure and morphology of the recycled graphite are essentially unchanged compared to pristine commercial anode-grade graphite,and despite some minor impurities from the recycling process,the recycled graphite provides a remarkable reversible specific capacity of more than 350 mAh g^(−1).Even more importantly,newly assembled graphite‖NMC532 cells show excellent cycling stability with a capacity retention of 80%after 1000 cycles,that is,comparable to the performance of reference full cells comprising pristine commercial graphite.展开更多
Combining the first-principles calculations and structural enumeration with recognition,the delithiation process of LiNiO_(2)is investigated,where various supercell shapes are considered in order to obtain the formati...Combining the first-principles calculations and structural enumeration with recognition,the delithiation process of LiNiO_(2)is investigated,where various supercell shapes are considered in order to obtain the formation energy of Li_(x)NiO_(2).Meanwhile,the voltage profile is simulated and the ordered phases of lithium vacancies corresponding to concentrations of 1/4,2/5,3/7,1/2,2/3,3/4,5/6,and 6/7 are predicted.To understand the capacity decay in the experiment during the charge/discharge cycles,deoxygenation and Li/Ni antisite defects are calculated,revealing that the chains of oxygen vacancies will be energetically preferrable.It can be inferred that in the absence of oxygen atom in high delithiate state,the diffusion of Ni atoms is facilitated and the formation of Li/Ni antisite is induced.展开更多
Two-dimensional(2D)metal-organic frameworks(MOFs)are rapidly emerging as a unique class of mushrooming family of 2D materials offering distinctive features,such as hierarchical porosity,extensive surface area,easily a...Two-dimensional(2D)metal-organic frameworks(MOFs)are rapidly emerging as a unique class of mushrooming family of 2D materials offering distinctive features,such as hierarchical porosity,extensive surface area,easily available active sites,and versatile,adaptable structures.These promising characteristics have positioned them as highly appealing alternatives for a wide range of applications in energy storage technologies,including lithium batteries.Nevertheless,the poor conductivity and limited stability of 2D MOFs have limited their real applications in electrochemical energy storage.These limitations have therefore warranted ongoing research to enhance the performance of 2D MOFs.Given the significance of 2D MOF-based materials as an emerging class of advanced materials,a multitude of strategy has been devised to address these challenges such as synthesizing 2D conductive MOFs and derivatives along with 2D MOF hybridization.One promising approach involves the use of 2D MOF derivatives,including transition metal oxides,which due to their abundant unsatu rated active metal sites and shorter diffusion paths,offer superior electrochemical performance.Additionally,by combining pristine 2D MOFs with other materials,hybrid 2D MOF materials can be created.These hybrids,with their enhanced stability and conductivity,can be directly utilized as active materials in lithium batteries.In the present review,we categorize 2D MOF-based materials into three distinct groups:pristine 2D MOFs,2D MOFderived materials,and 2D MOF hybrid materials.The synthesis methods for each group,along with their specific applications as electrode materials in lithium-ion batteries,are discussed in detail.This comprehensive review provides insights into the potential of 2D MOFs while highlighting the opportunities and challenges that are present in this evolving field.展开更多
We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed b...We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed by low-temperature annealing.This allows the systematic design of crystalline C_(60)as an active material for Li-ion battery anodes.The hTNO@C_(60)composite demonstrates outstanding cyclic stability,retaining a capacity of 465 mA h g^(-1)after 1,000 cycles at 1 A g^(-1)It maintains a capacity of 98 mA h g^(-1)even after16,000 ultralong cycles at 8 A g^(-1)The enhancement in electrochemical properties is attributed to the successful growth and uniform doping of crystalline C_(60),resulting in improved electrical conductivity.The excellent electrochemical stability and properties of these composites make them promising anode materials.展开更多
Solid-state lithium batteries(SSLBs)solve safety issues and are potentially energy-dense alternatives to next-generation energy storage systems.Battery green recycling routes are responsible for the widespread use of ...Solid-state lithium batteries(SSLBs)solve safety issues and are potentially energy-dense alternatives to next-generation energy storage systems.Battery green recycling routes are responsible for the widespread use of SSLBs due to minimizing environmental contamination,reducing production costs,and providing a sustainable solution for resources,e.g.,saving rare earth elements(La,Ta,etc.).Herein,a solid-state recycling strategy is proposed to achieve green recycling of the crucial component solidstate electrolytes(SSEs)in spent SSLBs.The short-circuited garnet Li_(6.5)La_(3)Zr_(1.5)Ta_(0.5)O_(12)(LLZTO)is broken into fine particles and mixed with fresh particles to improve sintering activity and achieve high packing density.The continuous Li absorption process promotes sufficient grain fusion and guarantees the transformation from tetragonal phase to pure cubic phase for high-performance recycled LLZTO.The Li-ion conductivity reaches 5.80×10^(-4)S cm-1with a relative density of 95.9%.Symmetric Li cell with asrecycled LLZTO shows long-term cycling stability for 700 h at 0.3 mA cm^(-2)without any voltage hysteresis.Full cell exhibits an excellent cycling performance with a discharge capacity of 141.5 mA h g^(-1)and a capacity retention of 92.1%after 400 cycles(0.2C).This work develops an environmentally friendly and economically controllable strategy to recycle SSE from spent SSLBs,guiding future directions of SSLBs large-scale industrial application and green recycling study.展开更多
The growing number of decarbonization standards in the transportation sector has resulted in an increase in demand for electric cars.Renewable energy sources have the ability to bring the fossil fuel age to an end.Ele...The growing number of decarbonization standards in the transportation sector has resulted in an increase in demand for electric cars.Renewable energy sources have the ability to bring the fossil fuel age to an end.Electrochemical storage devices,particularly lithium-ion batteries,are critical for this transition’s success.This is owing to a combination of favorable characteristics such as high energy density and minimal self-discharge.Given the environmental degradation caused by hazardous wastes and the scarcity of some resources,recycling used lithium-ion batteries has significant economic and practical importance.Many efforts have been undertaken in recent years to recover cathode materials(such as high-value metals like cobalt,nickel,and lithium).Regrettably,the regeneration of lower-value-added anode materials(mostly graphite)has received little attention.However,given the widespread use of carbon-based materials and the higher concentration of lithium in the anode than in the environment,anode recycling has gotten a lot of attention.As a result,this article provides the most recent research progress in the recovery of graphite anode materials from spent lithium ion batteries,analyzing the strengths and weaknesses of various recovery routes such as direct physical recovery,heat treatment recovery,hydrometallurgy recovery,heat treatment-hydrometallurgy recovery,extraction,and electrochemical methods from the perspectives of energy,environment,and economy;additionally,the reuse of recycled anode mats is discussed.Finally,the problems and future possibilities of anode recycling are discussed.To enable the green recycling of wasted lithium ion batteries,a low energy-consuming and ecologically friendly solution should be investigated.展开更多
Lithium-ion batteries(LIBs)have been widely applied in portable electronic devices and electric vehicles.With the booming of the respective markets,a huge quantity of spent LIBs that typically use either LiFePO_(4) or...Lithium-ion batteries(LIBs)have been widely applied in portable electronic devices and electric vehicles.With the booming of the respective markets,a huge quantity of spent LIBs that typically use either LiFePO_(4) or Li N_(x)Co_(y)Mn_(z)O_(2) cathode materials will be produced in the very near future,imposing significant pressure for the development of suitable disposal/recycling technologies,in terms of both environmental protection and resource reclaiming.In this review,we firstly do a comprehensive summary of the-state-of-art technologies to recycle Li N_(x)Co_(y)Mn_(z)O_(2) and LiFePO_(4)-based LIBs,in the aspects of pretreatment,hydrometallurgical recycling,and direct regeneration of the cathode materials.This closed-loop strategy for cycling cathode materials has been regarded as an ideal approach considering its economic benefit and environmental friendliness.Afterward,as for the exhausted anode materials,we focus on the utilization of exhausted anode materials to obtain other functional materials,such as graphene.Finally,the existing challenges in recycling the LiFePO_(4) and Li N_(x)Co_(y)Mn_(z)O_(2) cathodes and graphite anodes for industrial-scale application are discussed in detail;and the possible strategies for these issues are proposed.We expect this review can provide a roadmap towards better technologies for recycling LIBs,shed light on the future development of novel battery recycling technologies to promote the environmental benignity and economic viability of the battery industry and pave way for the large-scale application of LIBs in industrial fields in the near future.展开更多
With the increasing popularity of new en ergy electric vehicles,the dema nd for lithium-ion batteries(LIBs)has been growing rapidly,which will produce a large number of spent LIBs.Therefore,recycling of spe nt LIBs ha...With the increasing popularity of new en ergy electric vehicles,the dema nd for lithium-ion batteries(LIBs)has been growing rapidly,which will produce a large number of spent LIBs.Therefore,recycling of spe nt LIBs has become an urge nt task to be solved,otherwise it will inevitably lead to serious environmental pollution.Herein,a unique recycling strategy is proposed to achieve the concurrent reuse of cathode and anode in the spent graphite/LiFePO_(4) batteries.Along with such recycling process,a unique cathode composed of recycled LFP/graphite(RLFPG)with cation/anion-co-storage ability is designed for new-type dual-ion battery(DIB).As a result,the recycle-derived DIB of Li/RLFPG is established with good electrochemical performance,such as an initial discharge capacity of 117.4 mA h g^(-1) at 25 mA g^(-1) and 78% capacity retention after 1000 cycles at 100 mA g^(-1).The working mechanism of Li/RLFPG DIB is also revealed via in situ X-ray diffraction and electrode kinetics studies.This work not only presents a farreaching significance for large-scale recycling of spent LIBs in the future,but also proposed a sustainable and econo mical method to design n ew-type sec on dary batteries as recycling of spe nt LIBs.展开更多
Phosphides possess large reversible capacity, small voltage hysteresis, and high energy efficiency, thus promising to be new anode candidates to replace commercial graphite for Li-ion batteries(LIBs).Through a facile ...Phosphides possess large reversible capacity, small voltage hysteresis, and high energy efficiency, thus promising to be new anode candidates to replace commercial graphite for Li-ion batteries(LIBs).Through a facile mechanochemistry method, we prepare a novel ternary phosphide of Ga0.5Al0.5P whose crystalline structure is determined to be a cation-disordered cubic zinc sulfide structure according to XRD refinement. As an anode for LIBs, the Ga0.5Al0.5P delivers a reversible capacity of 1,352 mA h g^(-1)at100 mA g^(-1)with an initial Coulombic efficiency(ICE) up to 90.0% based on a reversible Li-storage mechanism integrating intercalation and subsequent conversion processes as confirmed by various characterizations techniques including in-situ XRD, ex-situ Raman, and XPS and electrochemical characterizations.Graphite-modified Ga0.5Al0.5P exhibits a long-lasting cycling stability of retaining 1,182 mA h g^(-1)after300 cycles at 100 m A g^(-1), and 625 mA h g^(-1)after 800 cycles at 2,000 mA g^(-1), and a high-rate performance of remaining 342 m A h g^(-1)at 20,000 mA g^(-1). The outstanding electrochemical performances can be attributed to enhanced reaction kinetics enabled by the capacitive behaviors and the faster Liion diffusion enabled by the cation-mixing. Importantly, by tuning the cationic ratio, we develop a novel series of cation-mixed compounds of Ga_(1/3)Al_(2/3)P, Ga_(1/4)Al_(3/4)P, Ga_(1/5)Al_(4/5)P, Ga_(2/3)Al_(1/3)P, Ga_(3/4)Al_(1/4)P, and Ga_(4/5)Al_(1/5)P, which demonstrate large capacity, high ICE, and suitable anode potentials. Broadly, these compounds with disordered lattices probably present novel physicochemical properties, and high electrochemical performances, thus providing a new perspective for new materials design.展开更多
To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the...To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the depletion of fossil fuels have become significant global problems.Lithium-ion batteries(LIBs)have been distinguished themselves from alternative energy storage technologies for electric vehicles(EVs) due to superior qualities like high energy and power density,extended cycle life,and low maintenance cost to a competitive price.However,there are still certain challenges to be solved,like EV fast charging,longer lifetime,and reduced weight.For fast charging,the multi-stage constant current(MSCC) charging technique is an emerging solution to improve charging efficiency,reduce temperature rise during charging,increase charging/discharging capacities,shorten charging time,and extend the cycle life.However,there are large variations in the implementation of the number of stages,stage transition criterion,and C-rate selection for each stage.This paper provides a review of these problems by compiling information from the literature.An overview of the impact of different design parameters(number of stages,stage transition,and C-rate) that the MSCC charging techniques have had on the LIB performance and cycle life is described in detail and analyzed.The impact of design parameters on lifetime,charging efficiency,charging and discharging capacity,charging speed,and rising temperature during charging is presented,and this review provides guidelines for designing advanced fast charging strategies and determining future research gaps.展开更多
Si is considered as the promising anode materials for lithium-ion batteries(LIBs)owing to their high capacities of 4200 mAh g-1and natural abundancy.However,severe electrode pulverization and poor electronic and Li-io...Si is considered as the promising anode materials for lithium-ion batteries(LIBs)owing to their high capacities of 4200 mAh g-1and natural abundancy.However,severe electrode pulverization and poor electronic and Li-ionic conductivities hinder their practical applications.To resolve the afore-mentioned problems,we first demonstrate a cation-mixed disordered lattice and unique Li storage mechanism of single-phase ternary GaSiP_(2)compound,where the liquid metallic Ga and highly reactive P are incorporated into Si through a ball milling method.As confirmed by experimental and theoretical analyses,the introduced Ga and P enables to achieve the stronger resistance against volume variation and metallic conductivity,respectively,while the cation-mixed lattice provides the faster Li-ionic diffusion capability than those of the parent GaP and Si phases.The resulting GaSiP_(2)electrodes delivered the high specific capacity of 1615 mAh g-1and high initial Coulombic efficiency of 91%,while the graphite-modified GaSiP_(2)(GaSiP_(2)@C)achieved 83%of capacity retention after 900 cycles and high-rate capacity of 800 at 10,000 mA g-1.Furthermore,the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)//Ga SiP_(2)@C full cells achieved the high specific capacity of 1049 mAh g-1after 100 cycles,paving a way for the rational design of high-performance LIB anode materials.展开更多
This study explored the complex effect of graphite tortuosity on the electrochemical performance of Ni-rich NCA90 Li-ion batteries(LIBs).Different levels of graphite anode tortuosity were analyzed,revealing that low-t...This study explored the complex effect of graphite tortuosity on the electrochemical performance of Ni-rich NCA90 Li-ion batteries(LIBs).Different levels of graphite anode tortuosity were analyzed,revealing that low-tortuosity electrodes had better graphite utilization.The in-plane tortuosities of the graphite anode electrodes examined were 1.70,1.94,2.05,and 2.18,while their corresponding through-plane tortuosities were 4.74,6.94,8.19,and 9.80.In-operando X-ray diffraction and differential electrochemical mass spectrometry were employed to investigate the charge storage mechanism and gas evolution.The study revealed that while graphite electrode tortuosity impacted the amount of Li present in the lithiated graphite phase due to diffusion constraints,it did not affect gas generation.The Li-ion utilization in low-tortuosity electrodes was higher than that in high-tortuosity electrodes because of solid-diffusion limitations.Additionally,the galvanostatic intermittent titration technique(GITT) was employed to investigate a lithium-ion diffusion coefficient.Our results indicate that the lithium-ion diffusion coefficient exhibits a significant difference only during LiC_(6) phase transition.We also observed that the use of a lower tortuosity electrode leads to improved lithium-ion insertion.Consequently,graphite utilization is influenced by the porous electrode design.Safety tests adhering to UN38.3 guidelines verified battery safety.The study demonstrated the practical application of optimized NCA90 LIB cells with diverse graphite electrode tortuosities in a high-performance Lamborghini GoKart,paving the way for further advancements in Ni-rich LIB technology.展开更多
The demand for Li-ion batteries (LIBs) for vehicles is increasing. However, LIBs use valuable rare metals, such as Co and Li, aswell as environmentally toxic reagents. LIBs are also necessary to utilize for a long per...The demand for Li-ion batteries (LIBs) for vehicles is increasing. However, LIBs use valuable rare metals, such as Co and Li, aswell as environmentally toxic reagents. LIBs are also necessary to utilize for a long period and to recycle useful materials. The reduction, reuse,and recycle (3R) of spent LIBs is an important consideration in constructing a circular economy. In this paper, a flowsheet of the 3R of LIBs isproposed and methods to reduce the utilization of valuable rare metals and the amount of spent LIBs by remanufacturing used parts and designingnew batteries considering the concept of 3R are described. Next, several technological processes for the reuse and recycling of LIBs are introduced.These technologies include discharge, sorting, crushing, binder removal, physical separation, and pyrometallurgical and hydrometallurgicalprocessing. Each process, as well as the related physical, chemical, and biological treatments, are discussed. Finally, the problem of developedtechnologies and future subjects for 3R of LIBs are described.展开更多
基金National Research Foundation Singapore and National Environment Agency Singapore,Grant/Award Number:CTRL-2023-1D-01。
文摘Direct recycling is a novel approach to overcoming the drawbacks of conventional lithium-ion battery(LIB)recycling processes and has gained considerable attention from the academic and industrial sectors in recent years.The primary objective of directly recycling LIBs is to efficiently recover and restore the active electrode materials and other components in the solid phase while retaining electrochemical performance.This technology's advantages over traditional pyrometallurgy and hydrometallurgy are costeffectiveness,energy efficiency,and sustainability,and it preserves the material structure and morphology and can shorten the overall recycling path.This review extensively discusses the advancements in the direct recycling of LIBs,including battery sorting,pretreatment processes,separation of cathode and anode materials,and regeneration and quality enhancement of electrode materials.It encompasses various approaches to successfully regenerate high-value electrode materials and streamlining the recovery process without compromising their electrochemical properties.Furthermore,we highlight key challenges in direct recycling when scaled from lab to industries in four perspectives:(1)battery design,(2)disassembling,(3)electrode delamination,and(4)commercialization and sustainability.Based on these challenges and changing market trends,a few strategies are discussed to aid direct recycling efforts,such as binders,electrolyte selection,and alternative battery designs;and recent transitions and technological advancements in the battery industry are presented.
基金financially supported by the National Natural Science Foundation of China(NSFC)(52274295)the Natural Science Foundation of Hebei Province(E2020501001,E2021501029,A2021501007,E2022501028,E2022501029)+5 种基金the Natural Science Foundation-Steel,the Iron Foundation of Hebei Province(No.E2022501030)the Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(22567627H)the Science and Technology Project of Hebei Education Department(ZD2022158)the Central Guided Local Science and Technology Development Fund Project of Hebei province(226Z4401G)the China Scholarship Council(No.202206080061,202206050119)the 2023 Hebei Provincial Postgraduate Student Innovation Ability training funding project(CXZZSS2023195)。
文摘The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization.
基金the Technology Innovation Program(or Industrial Strategic Technology Development Program)and the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.20022950)。
文摘The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant challenges from environmental,economic,and resource management perspectives.This review paper focuses on the pyrometallurgy-based recycling process of lithium-ion batteries,exploring the fundamental understanding of this process and the importance of its optimization.Centering on the high energy consumption and emission gas issues of the pyrometallurgical recycling process,we systematically analyzed the capital-intensive nature of this process and the resulting technological characteristics.Furthermore,we conducted an in-depth discussion on the future research directions to overcome the existing technological barriers and limitations.This review will provide valuable insights for researchers and industry stakeholders in the battery recycling field.
基金supported by the National Natural Science Foundation of China(21975074,91834301)the Innovation Program of Shanghai Municipal Education Commissionthe Fundamental Research Funds for the Central Universities.
文摘Developing single-crystalline Ni-rich cathodes is an effective strategy to improve the safety and cycle life of Li-ion batteries(LIBs).However,the easy-to-loss of Li and O in high-temperature lithiation results in unsatisfactory ordered layered structure and stoichiometry.Herein,we demonstrate the synthesis of highly-ordered and fully-stoichiometric single-crystalline LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)cathodes by the regulation of pre-lithiation kinetics.The well-balanced pre-lithiation kinetics have been proved to greatly improve the proportion of layered phase in the intermediate by inhibiting the formation of metastable spinel phase,which promoted the rapid transformation of the intermediate into highly-ordered layered SC-NCM83 in the subsequent lithiation process.After coating a layer of Li_(2)O–B_(2)O_(3),the resultant cathodes deliver superior cycling stability with 90.9%capacity retention at 1C after 300 cycles in pouch-type full batteries.The enhancement mechanism has also been clarified.These findings exhibit fundamental insights into the pre-lithiation kinetics process for guiding the synthesis of high-quality singlecrystalline Ni-rich cathodes.
基金supported by the National Natural Science Foundation of China (No.92372123)the Natural Science Foundation of Guangdong Province (No.2022B1515020005)the Department of Science and Technology of Guangdong Province (No.2020B0101030005)
文摘Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.
基金the Brazilian Federal Agency for Support and Evaluation of Graduate Education(CAPES)the Brazilian National Council for Scientific and Technological Development(CNPq,306239/2019-1)for their financial support。
文摘Lithium-ion batteries(LIBs)containing graphite as anode material and LiCoO_(2),LiMn_(2)O_(4),and LiNi_(x)Mn_(y)Co_(z)O_(2) as cathode materials are the most used worldwide because of their high energy density,capacitance,durability,and safety.However,such widespread use implies the generation of large amounts of electronic waste.It is estimated that more than 11 million ton of LIBs waste will have been generated by 2030.Battery recycling can contribute to minimizing environmental contamination and reducing production costs through the recovery of high-value raw materials such as lithium,cobalt,and nickel.The most common processes used to recycle spent LIBs are pyrometallurgical,biometallurgical,and hydrometallurgical.Given the current scenario,it is necessary to develop environmentally friendly methods to recycle batteries and synthesize materials with multiple technological applications.This study presents a review of industrial and laboratory processes for recycling spent LIBs and producing materials that can be used in new batteries,energy storage devices,electrochemical sensors,and photocatalytic reactions.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(Ministry of Science and ICT(RS-2023-00254424)Ministry of Education(2020R1A6A1A03038540))。
文摘This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recycling method that directly produces CAM precursors from LIB leachate,is explored.This process encompasses six key steps,including pretreatment,leaching,purification,adjustment of metal concentrations,precursor synthesis,and sintering.The review also investigates the potential introduction of impurity elements during CAM resynthesis and provides tolerance levels for these impurities based on thorough reference analysis.Additionally,it addresses challenges related to the commercialization of the resynthesis process.Notably,this review represents the first comprehensive assessment of CAM resynthesis,including the systematic evaluation of 12 impurity elements(Fe,Li,Al,Cu,C,P,F,Na,Cl,S,Mg,and Zn).Overall,this comprehensive review is poised to support the commercial development of resynthesized CAMs by offering valuable guidelines for managing impurities and streamlining the purification process.
基金Bundesministerium für Bildung und Forschung,Grant/Award Numbers:03XP0138C,03XP0306C。
文摘The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recycling of LIBs at the end of their life.Herein,we describe a froth flotation-based process to recycle graphite—the predominant active material for the negative electrode—from spent LIBs and investigate its reuse in newly assembled LIBs.It has been found that the structure and morphology of the recycled graphite are essentially unchanged compared to pristine commercial anode-grade graphite,and despite some minor impurities from the recycling process,the recycled graphite provides a remarkable reversible specific capacity of more than 350 mAh g^(−1).Even more importantly,newly assembled graphite‖NMC532 cells show excellent cycling stability with a capacity retention of 80%after 1000 cycles,that is,comparable to the performance of reference full cells comprising pristine commercial graphite.
基金Project supported by the Science Fund of the Guangdong Major Project of Basic and Applied Basic Research,China(Grant No.2019B030302011)the Fund of the Science and Technology Program of Guangzhou,China(Grant No.202201010090)。
文摘Combining the first-principles calculations and structural enumeration with recognition,the delithiation process of LiNiO_(2)is investigated,where various supercell shapes are considered in order to obtain the formation energy of Li_(x)NiO_(2).Meanwhile,the voltage profile is simulated and the ordered phases of lithium vacancies corresponding to concentrations of 1/4,2/5,3/7,1/2,2/3,3/4,5/6,and 6/7 are predicted.To understand the capacity decay in the experiment during the charge/discharge cycles,deoxygenation and Li/Ni antisite defects are calculated,revealing that the chains of oxygen vacancies will be energetically preferrable.It can be inferred that in the absence of oxygen atom in high delithiate state,the diffusion of Ni atoms is facilitated and the formation of Li/Ni antisite is induced.
基金based upon research funded by the Iran National Science Foundation. (INSF)under project No.4022382 and 4025075。
文摘Two-dimensional(2D)metal-organic frameworks(MOFs)are rapidly emerging as a unique class of mushrooming family of 2D materials offering distinctive features,such as hierarchical porosity,extensive surface area,easily available active sites,and versatile,adaptable structures.These promising characteristics have positioned them as highly appealing alternatives for a wide range of applications in energy storage technologies,including lithium batteries.Nevertheless,the poor conductivity and limited stability of 2D MOFs have limited their real applications in electrochemical energy storage.These limitations have therefore warranted ongoing research to enhance the performance of 2D MOFs.Given the significance of 2D MOF-based materials as an emerging class of advanced materials,a multitude of strategy has been devised to address these challenges such as synthesizing 2D conductive MOFs and derivatives along with 2D MOF hybridization.One promising approach involves the use of 2D MOF derivatives,including transition metal oxides,which due to their abundant unsatu rated active metal sites and shorter diffusion paths,offer superior electrochemical performance.Additionally,by combining pristine 2D MOFs with other materials,hybrid 2D MOF materials can be created.These hybrids,with their enhanced stability and conductivity,can be directly utilized as active materials in lithium batteries.In the present review,we categorize 2D MOF-based materials into three distinct groups:pristine 2D MOFs,2D MOFderived materials,and 2D MOF hybrid materials.The synthesis methods for each group,along with their specific applications as electrode materials in lithium-ion batteries,are discussed in detail.This comprehensive review provides insights into the potential of 2D MOFs while highlighting the opportunities and challenges that are present in this evolving field.
基金supported by a research program through the National Research Foundation of Korea (NRF),funded by MSIT and MEST (NRF-2018R1A5A1025594,NRF-2021R1A4A1022198,and 2022R1A2B5B01001943)。
文摘We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed by low-temperature annealing.This allows the systematic design of crystalline C_(60)as an active material for Li-ion battery anodes.The hTNO@C_(60)composite demonstrates outstanding cyclic stability,retaining a capacity of 465 mA h g^(-1)after 1,000 cycles at 1 A g^(-1)It maintains a capacity of 98 mA h g^(-1)even after16,000 ultralong cycles at 8 A g^(-1)The enhancement in electrochemical properties is attributed to the successful growth and uniform doping of crystalline C_(60),resulting in improved electrical conductivity.The excellent electrochemical stability and properties of these composites make them promising anode materials.
基金supported by the China National Postdoctoral Program for Innovative Talents(BX20220384)the National Natural Science Foundation of China(52175301)。
文摘Solid-state lithium batteries(SSLBs)solve safety issues and are potentially energy-dense alternatives to next-generation energy storage systems.Battery green recycling routes are responsible for the widespread use of SSLBs due to minimizing environmental contamination,reducing production costs,and providing a sustainable solution for resources,e.g.,saving rare earth elements(La,Ta,etc.).Herein,a solid-state recycling strategy is proposed to achieve green recycling of the crucial component solidstate electrolytes(SSEs)in spent SSLBs.The short-circuited garnet Li_(6.5)La_(3)Zr_(1.5)Ta_(0.5)O_(12)(LLZTO)is broken into fine particles and mixed with fresh particles to improve sintering activity and achieve high packing density.The continuous Li absorption process promotes sufficient grain fusion and guarantees the transformation from tetragonal phase to pure cubic phase for high-performance recycled LLZTO.The Li-ion conductivity reaches 5.80×10^(-4)S cm-1with a relative density of 95.9%.Symmetric Li cell with asrecycled LLZTO shows long-term cycling stability for 700 h at 0.3 mA cm^(-2)without any voltage hysteresis.Full cell exhibits an excellent cycling performance with a discharge capacity of 141.5 mA h g^(-1)and a capacity retention of 92.1%after 400 cycles(0.2C).This work develops an environmentally friendly and economically controllable strategy to recycle SSE from spent SSLBs,guiding future directions of SSLBs large-scale industrial application and green recycling study.
基金Deanship of Scientific Research at Taif University for the grant received for this research.This research was supported by Taif University with research grant(TURSP-2020/77).
文摘The growing number of decarbonization standards in the transportation sector has resulted in an increase in demand for electric cars.Renewable energy sources have the ability to bring the fossil fuel age to an end.Electrochemical storage devices,particularly lithium-ion batteries,are critical for this transition’s success.This is owing to a combination of favorable characteristics such as high energy density and minimal self-discharge.Given the environmental degradation caused by hazardous wastes and the scarcity of some resources,recycling used lithium-ion batteries has significant economic and practical importance.Many efforts have been undertaken in recent years to recover cathode materials(such as high-value metals like cobalt,nickel,and lithium).Regrettably,the regeneration of lower-value-added anode materials(mostly graphite)has received little attention.However,given the widespread use of carbon-based materials and the higher concentration of lithium in the anode than in the environment,anode recycling has gotten a lot of attention.As a result,this article provides the most recent research progress in the recovery of graphite anode materials from spent lithium ion batteries,analyzing the strengths and weaknesses of various recovery routes such as direct physical recovery,heat treatment recovery,hydrometallurgy recovery,heat treatment-hydrometallurgy recovery,extraction,and electrochemical methods from the perspectives of energy,environment,and economy;additionally,the reuse of recycled anode mats is discussed.Finally,the problems and future possibilities of anode recycling are discussed.To enable the green recycling of wasted lithium ion batteries,a low energy-consuming and ecologically friendly solution should be investigated.
基金supported by the National Natural Science Foundation of China(Nos.51072130,51502045 and 21905202)the Australian Research Council(ARC)through Discovery Early Career Researcher Award(DECRA,No.DE170100871)program。
文摘Lithium-ion batteries(LIBs)have been widely applied in portable electronic devices and electric vehicles.With the booming of the respective markets,a huge quantity of spent LIBs that typically use either LiFePO_(4) or Li N_(x)Co_(y)Mn_(z)O_(2) cathode materials will be produced in the very near future,imposing significant pressure for the development of suitable disposal/recycling technologies,in terms of both environmental protection and resource reclaiming.In this review,we firstly do a comprehensive summary of the-state-of-art technologies to recycle Li N_(x)Co_(y)Mn_(z)O_(2) and LiFePO_(4)-based LIBs,in the aspects of pretreatment,hydrometallurgical recycling,and direct regeneration of the cathode materials.This closed-loop strategy for cycling cathode materials has been regarded as an ideal approach considering its economic benefit and environmental friendliness.Afterward,as for the exhausted anode materials,we focus on the utilization of exhausted anode materials to obtain other functional materials,such as graphene.Finally,the existing challenges in recycling the LiFePO_(4) and Li N_(x)Co_(y)Mn_(z)O_(2) cathodes and graphite anodes for industrial-scale application are discussed in detail;and the possible strategies for these issues are proposed.We expect this review can provide a roadmap towards better technologies for recycling LIBs,shed light on the future development of novel battery recycling technologies to promote the environmental benignity and economic viability of the battery industry and pave way for the large-scale application of LIBs in industrial fields in the near future.
基金support from the National Natural Science Foundation of China(No.91963118)the Science Technology Program of Jilin Province(No.20200201066JC)the 111 Project(No.B13013).
文摘With the increasing popularity of new en ergy electric vehicles,the dema nd for lithium-ion batteries(LIBs)has been growing rapidly,which will produce a large number of spent LIBs.Therefore,recycling of spe nt LIBs has become an urge nt task to be solved,otherwise it will inevitably lead to serious environmental pollution.Herein,a unique recycling strategy is proposed to achieve the concurrent reuse of cathode and anode in the spent graphite/LiFePO_(4) batteries.Along with such recycling process,a unique cathode composed of recycled LFP/graphite(RLFPG)with cation/anion-co-storage ability is designed for new-type dual-ion battery(DIB).As a result,the recycle-derived DIB of Li/RLFPG is established with good electrochemical performance,such as an initial discharge capacity of 117.4 mA h g^(-1) at 25 mA g^(-1) and 78% capacity retention after 1000 cycles at 100 mA g^(-1).The working mechanism of Li/RLFPG DIB is also revealed via in situ X-ray diffraction and electrode kinetics studies.This work not only presents a farreaching significance for large-scale recycling of spent LIBs in the future,but also proposed a sustainable and econo mical method to design n ew-type sec on dary batteries as recycling of spe nt LIBs.
基金supported by the National Natural Science Foundation of China (22178068)the Brain Pool program (2021H1D3A2A02045576) funded by National Research Foundation of Korea (NRF)。
文摘Phosphides possess large reversible capacity, small voltage hysteresis, and high energy efficiency, thus promising to be new anode candidates to replace commercial graphite for Li-ion batteries(LIBs).Through a facile mechanochemistry method, we prepare a novel ternary phosphide of Ga0.5Al0.5P whose crystalline structure is determined to be a cation-disordered cubic zinc sulfide structure according to XRD refinement. As an anode for LIBs, the Ga0.5Al0.5P delivers a reversible capacity of 1,352 mA h g^(-1)at100 mA g^(-1)with an initial Coulombic efficiency(ICE) up to 90.0% based on a reversible Li-storage mechanism integrating intercalation and subsequent conversion processes as confirmed by various characterizations techniques including in-situ XRD, ex-situ Raman, and XPS and electrochemical characterizations.Graphite-modified Ga0.5Al0.5P exhibits a long-lasting cycling stability of retaining 1,182 mA h g^(-1)after300 cycles at 100 m A g^(-1), and 625 mA h g^(-1)after 800 cycles at 2,000 mA g^(-1), and a high-rate performance of remaining 342 m A h g^(-1)at 20,000 mA g^(-1). The outstanding electrochemical performances can be attributed to enhanced reaction kinetics enabled by the capacitive behaviors and the faster Liion diffusion enabled by the cation-mixing. Importantly, by tuning the cationic ratio, we develop a novel series of cation-mixed compounds of Ga_(1/3)Al_(2/3)P, Ga_(1/4)Al_(3/4)P, Ga_(1/5)Al_(4/5)P, Ga_(2/3)Al_(1/3)P, Ga_(3/4)Al_(1/4)P, and Ga_(4/5)Al_(1/5)P, which demonstrate large capacity, high ICE, and suitable anode potentials. Broadly, these compounds with disordered lattices probably present novel physicochemical properties, and high electrochemical performances, thus providing a new perspective for new materials design.
文摘To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the depletion of fossil fuels have become significant global problems.Lithium-ion batteries(LIBs)have been distinguished themselves from alternative energy storage technologies for electric vehicles(EVs) due to superior qualities like high energy and power density,extended cycle life,and low maintenance cost to a competitive price.However,there are still certain challenges to be solved,like EV fast charging,longer lifetime,and reduced weight.For fast charging,the multi-stage constant current(MSCC) charging technique is an emerging solution to improve charging efficiency,reduce temperature rise during charging,increase charging/discharging capacities,shorten charging time,and extend the cycle life.However,there are large variations in the implementation of the number of stages,stage transition criterion,and C-rate selection for each stage.This paper provides a review of these problems by compiling information from the literature.An overview of the impact of different design parameters(number of stages,stage transition,and C-rate) that the MSCC charging techniques have had on the LIB performance and cycle life is described in detail and analyzed.The impact of design parameters on lifetime,charging efficiency,charging and discharging capacity,charging speed,and rising temperature during charging is presented,and this review provides guidelines for designing advanced fast charging strategies and determining future research gaps.
基金supported by National Natural Science Foundation of China(No.22178068)the Brain Pool(BP)program(No.2021H1D3A2A02045576)funded by National Research Foundation of KoreaNational Research Foundation of Korea grant funded by the Korea government(MSIT)(No.NRF-2020R1A3B2079803 and No.2021M3D1A2043791)。
文摘Si is considered as the promising anode materials for lithium-ion batteries(LIBs)owing to their high capacities of 4200 mAh g-1and natural abundancy.However,severe electrode pulverization and poor electronic and Li-ionic conductivities hinder their practical applications.To resolve the afore-mentioned problems,we first demonstrate a cation-mixed disordered lattice and unique Li storage mechanism of single-phase ternary GaSiP_(2)compound,where the liquid metallic Ga and highly reactive P are incorporated into Si through a ball milling method.As confirmed by experimental and theoretical analyses,the introduced Ga and P enables to achieve the stronger resistance against volume variation and metallic conductivity,respectively,while the cation-mixed lattice provides the faster Li-ionic diffusion capability than those of the parent GaP and Si phases.The resulting GaSiP_(2)electrodes delivered the high specific capacity of 1615 mAh g-1and high initial Coulombic efficiency of 91%,while the graphite-modified GaSiP_(2)(GaSiP_(2)@C)achieved 83%of capacity retention after 900 cycles and high-rate capacity of 800 at 10,000 mA g-1.Furthermore,the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)//Ga SiP_(2)@C full cells achieved the high specific capacity of 1049 mAh g-1after 100 cycles,paving a way for the rational design of high-performance LIB anode materials.
基金financially supported under the Program Management Unit for National Competitiveness Enhancement (PMUC) by the Office of the National Higher Education Science Research and Innovation Policy Council (NXPO) PTT Public Company LimitedIRPC Public Company Limited, Thailand Science Research and Innovation (TSRI) under the Fundamental Fund by TSRI (FRB660004/0457)+2 种基金Vidyasirimedhi Institute of Science and Technology (VISTEC)Energy Policy and Planning Office (EPPO), Ministry of Energy, Thailandthe Frontier Research Centre (FRC) supported this work, VISTEC。
文摘This study explored the complex effect of graphite tortuosity on the electrochemical performance of Ni-rich NCA90 Li-ion batteries(LIBs).Different levels of graphite anode tortuosity were analyzed,revealing that low-tortuosity electrodes had better graphite utilization.The in-plane tortuosities of the graphite anode electrodes examined were 1.70,1.94,2.05,and 2.18,while their corresponding through-plane tortuosities were 4.74,6.94,8.19,and 9.80.In-operando X-ray diffraction and differential electrochemical mass spectrometry were employed to investigate the charge storage mechanism and gas evolution.The study revealed that while graphite electrode tortuosity impacted the amount of Li present in the lithiated graphite phase due to diffusion constraints,it did not affect gas generation.The Li-ion utilization in low-tortuosity electrodes was higher than that in high-tortuosity electrodes because of solid-diffusion limitations.Additionally,the galvanostatic intermittent titration technique(GITT) was employed to investigate a lithium-ion diffusion coefficient.Our results indicate that the lithium-ion diffusion coefficient exhibits a significant difference only during LiC_(6) phase transition.We also observed that the use of a lower tortuosity electrode leads to improved lithium-ion insertion.Consequently,graphite utilization is influenced by the porous electrode design.Safety tests adhering to UN38.3 guidelines verified battery safety.The study demonstrated the practical application of optimized NCA90 LIB cells with diverse graphite electrode tortuosities in a high-performance Lamborghini GoKart,paving the way for further advancements in Ni-rich LIB technology.
文摘The demand for Li-ion batteries (LIBs) for vehicles is increasing. However, LIBs use valuable rare metals, such as Co and Li, aswell as environmentally toxic reagents. LIBs are also necessary to utilize for a long period and to recycle useful materials. The reduction, reuse,and recycle (3R) of spent LIBs is an important consideration in constructing a circular economy. In this paper, a flowsheet of the 3R of LIBs isproposed and methods to reduce the utilization of valuable rare metals and the amount of spent LIBs by remanufacturing used parts and designingnew batteries considering the concept of 3R are described. Next, several technological processes for the reuse and recycling of LIBs are introduced.These technologies include discharge, sorting, crushing, binder removal, physical separation, and pyrometallurgical and hydrometallurgicalprocessing. Each process, as well as the related physical, chemical, and biological treatments, are discussed. Finally, the problem of developedtechnologies and future subjects for 3R of LIBs are described.