期刊文献+
共找到12,984篇文章
< 1 2 250 >
每页显示 20 50 100
Interlayer and intralayer co-modified flexible V_(2)CT_(X) MXene@SWCNT films for high-power Li-ion capacitors
1
作者 Wanli Wang Min Feng +6 位作者 Enze Hu Zhaowei Hu Cheng Fan Huifang Li Peng Wang Xiaojun Wang Zhiming Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期101-109,共9页
As an emerging member of the two-dimensional(2D)material family,V_(2)CT_(X)MXene shows great potential in the application of lithium-ion capacitors(LICs)due to its unique structure and excellent electrical conductivit... As an emerging member of the two-dimensional(2D)material family,V_(2)CT_(X)MXene shows great potential in the application of lithium-ion capacitors(LICs)due to its unique structure and excellent electrical conductivity.However,severe nanosheets stacking and intra-layer transport barriers have limited the further development of V_(2)CT_(X)MXene-based materials.Herein,we prepared Kions and–O functional group co-modified V_(2)CT_(X)MXene(VCT-K)and further incorporated it with single-walled carbon nanotube(SWCNT),obtaining freestanding V_(2)CT_(X)composite films(VCT-K@C)with the 3D conductive network.Significantly,K+ions were introduced into V_(2)CT_(X)MXene to stabilize the interlayer structure and prevent the aggregation of nanosheets,the terminal group of–O was controllably modified on the surface of MXene to improve the Li+ions storage reversible capacities and the SWCNT acted as the bridge between MXene nanosheets to opens up the channels for ion/electron transportation in the longitudinal direction.Benefited from the synergistic effect of VCT-K and SWCNT,the VCT-K@C exhibits superior reversible specific capacities of 671.8 mA h g^(-1)at 0.1 A g^(-1)and 318 mA h g^(-1)at 1.0 A g^(-1).Furthermore,the assembled LICs with VCT-K@C anode coupling activated carbon(AC)cathode deliver an outstanding power density of 19.0 kW kg^(-1)at 67.4 Wh kg^(-1),a high energy density of 140.5 Wh kg^(-1)at 94.8 W kg^(-1)and a stable capacitance retention of 86%after 6000 cycles at 10 A g^(-1).Such unique structures and excellent electrochemical properties are expected to pave the way for the large-scale application in LICs of MXene-based materials. 展开更多
关键词 Interlayer and intralayer co-modification MXene SWCNT Flexible self-supported anodes Lithium-ion capacitors
下载PDF
A comprehensive review on the resynthesis of ternary cathode active materials from the leachate of Li-ion batteries
2
作者 Dongwoo Kim Hyeoncheol Joo +8 位作者 Chanmin Kim Seoa Kim Wan-Yi Kim Sangwoo Han Joongkil Park Soyeon Park Heechul Jung Sanghyuk Park Kyungjung Kwon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期446-463,I0010,共19页
This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recyclin... This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recycling method that directly produces CAM precursors from LIB leachate,is explored.This process encompasses six key steps,including pretreatment,leaching,purification,adjustment of metal concentrations,precursor synthesis,and sintering.The review also investigates the potential introduction of impurity elements during CAM resynthesis and provides tolerance levels for these impurities based on thorough reference analysis.Additionally,it addresses challenges related to the commercialization of the resynthesis process.Notably,this review represents the first comprehensive assessment of CAM resynthesis,including the systematic evaluation of 12 impurity elements(Fe,Li,Al,Cu,C,P,F,Na,Cl,S,Mg,and Zn).Overall,this comprehensive review is poised to support the commercial development of resynthesized CAMs by offering valuable guidelines for managing impurities and streamlining the purification process. 展开更多
关键词 li-ion battery Recycling Resynthesis LEACHATE IMPURITY
下载PDF
Carbon nanocages bridged with graphene enable fast kinetics for dual-carbon lithium-ion capacitors
3
作者 Shani Li Yanan Xu +7 位作者 Wenhao Liu Xudong Zhang Yibo Ma Qifan Peng Xiong Zhang Xianzhong Sun Kai Wang Yanwei Ma 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期573-583,共11页
Lithium-ion capacitors(LICs) combining the advantages of lithium-ion batteries and supercapacitors are considered a promising nextgeneration energy storage device. However, the sluggish kinetics of battery-type anode ... Lithium-ion capacitors(LICs) combining the advantages of lithium-ion batteries and supercapacitors are considered a promising nextgeneration energy storage device. However, the sluggish kinetics of battery-type anode cannot match the capacitor-type cathode, restricting the development of LICs. Herein, hierarchical carbon framework(HCF) anode material composed of 0D carbon nanocage bridged with 2D graphene network are developed via a template-confined synthesis process. The HCF with nanocage structure reduces the Li^(+) transport path and benefits the rapid Li^(+) migration, while 2D graphene network can promote the electron interconnecting of carbon nanocages. In addition, the doped N atoms in HCF facilitate to the adsorption of ions and enhance the pseudo contribution, thus accelerate the kinetics of the anode. The HCF anode delivers high specific capacity, remarkable rate capability. The LIC pouch-cell based on HCF anode and active HCF(a-HCF) cathode can provide a high energy density of 162 Wh kg^(-1) and a superior power density of 15.8 kW kg^(-1), as well as a long cycling life exceeding 15,000cycles. This study demonstrates that the well-defined design of hierarchical carbon framework by incorporating 0D carbon nanocages and 2D graphene network is an effective strategy to promote LIC anode kinetics and hence boost the LIC electrochemical performance. 展开更多
关键词 Hierarchical carbon framework NANOCAGE ZIF GRAPHENE Lithium-ion capacitors
下载PDF
Revealing the key role of non-solvating diluents for fast-charging and low temperature Li-ion batteries
4
作者 Yuping Zhang Siyin Li +8 位作者 Junkai Shi Jiawei Lai Ziyue Zhuang Jingwen Liu Wenming Yang Liang Ma Yue-Peng Cai Jijian Xu Qifeng Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期171-180,共10页
Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to t... Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs. 展开更多
关键词 li-ion battery Fast-charging Low temperature Non-solvating diluent Shielding effect
下载PDF
Coupling of Adhesion and Anti‑Freezing Properties in Hydrogel Electrolytes for Low‑Temperature Aqueous‑Based Hybrid Capacitors
5
作者 Jingya Nan Yue Sun +9 位作者 Fusheng Yang Yijing Zhang Yuxi Li Zihao Wang Chuchu Wang Dingkun Wang Fuxiang Chu Chunpeng Wang Tianyu Zhu Jianchun Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期15-31,共17页
Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety,mechanical and thermal stability and easy-to-direct stacking.Hydrogel electrolytes are appea... Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety,mechanical and thermal stability and easy-to-direct stacking.Hydrogel electrolytes are appealing solid-state electrolytes because of eco-friendliness,high conductivity and intrinsic flexibility.However,the electrolyte/electrode interfacial contact and anti-freezing properties of current hydrogel electrolytes are still challenging for practical applications of zinc-ion capacitors.Here,we report a class of hydrogel electrolytes that couple high interfacial adhesion and anti-freezing performance.The synergy of tough hydrogel matrix and chemical anchorage enables a well-adhered interface between hydrogel electrolyte and electrode.Meanwhile,the cooperative solvation of ZnCl2 and LiCl hybrid salts renders the hydrogel electrolyte high ionic conductivity and mechanical elasticity simultaneously at low temperatures.More significantly,the Zn||carbon nanotubes hybrid capacitor based on this hydrogel electrolyte exhibits low-temperature capacitive performance,delivering high-energy density of 39 Wh kg^(-1)at-60°C with capacity retention of 98.7%over 10,000 cycles.With the benefits of the well-adhered electrolyte/electrode interface and the anti-freezing hydrogel electrolyte,the Zn/Li hybrid capacitor is able to accommodate dynamic deformations and function well under 1000 tension cycles even at-60°C.This work provides a powerful strategy for enabling stable operation of low-temperature zinc-ion capacitors. 展开更多
关键词 Interfacial adhesion ANTI-FREEZING Hydrogel electrolytes Low-temperature hybrid capacitors Dynamic deformati
下载PDF
New insights into the pre-lithiation kinetics of single-crystalline Ni-rich cathodes for long-life Li-ion batteries
6
作者 Qiang Han Lele Cai +3 位作者 Zhaofeng Yang Yanjie Hu Hao Jiang Chunzhong Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期556-564,共9页
Developing single-crystalline Ni-rich cathodes is an effective strategy to improve the safety and cycle life of Li-ion batteries(LIBs).However,the easy-to-loss of Li and O in high-temperature lithiation results in uns... Developing single-crystalline Ni-rich cathodes is an effective strategy to improve the safety and cycle life of Li-ion batteries(LIBs).However,the easy-to-loss of Li and O in high-temperature lithiation results in unsatisfactory ordered layered structure and stoichiometry.Herein,we demonstrate the synthesis of highly-ordered and fully-stoichiometric single-crystalline LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)cathodes by the regulation of pre-lithiation kinetics.The well-balanced pre-lithiation kinetics have been proved to greatly improve the proportion of layered phase in the intermediate by inhibiting the formation of metastable spinel phase,which promoted the rapid transformation of the intermediate into highly-ordered layered SC-NCM83 in the subsequent lithiation process.After coating a layer of Li_(2)O–B_(2)O_(3),the resultant cathodes deliver superior cycling stability with 90.9%capacity retention at 1C after 300 cycles in pouch-type full batteries.The enhancement mechanism has also been clarified.These findings exhibit fundamental insights into the pre-lithiation kinetics process for guiding the synthesis of high-quality singlecrystalline Ni-rich cathodes. 展开更多
关键词 Single-crystalline cathode Ni-rich oxides Pre-lithiation li-ion batteries Surface modification
下载PDF
Atomistic understanding of capacity loss in LiNiO_(2)for high-nickel Li-ion batteries:First-principles study
7
作者 彭率 陈丽娟 +1 位作者 何长春 杨小宝 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期625-629,共5页
Combining the first-principles calculations and structural enumeration with recognition,the delithiation process of LiNiO_(2)is investigated,where various supercell shapes are considered in order to obtain the formati... Combining the first-principles calculations and structural enumeration with recognition,the delithiation process of LiNiO_(2)is investigated,where various supercell shapes are considered in order to obtain the formation energy of Li_(x)NiO_(2).Meanwhile,the voltage profile is simulated and the ordered phases of lithium vacancies corresponding to concentrations of 1/4,2/5,3/7,1/2,2/3,3/4,5/6,and 6/7 are predicted.To understand the capacity decay in the experiment during the charge/discharge cycles,deoxygenation and Li/Ni antisite defects are calculated,revealing that the chains of oxygen vacancies will be energetically preferrable.It can be inferred that in the absence of oxygen atom in high delithiate state,the diffusion of Ni atoms is facilitated and the formation of Li/Ni antisite is induced. 展开更多
关键词 li-ion battery ground state formation energy oxygen vacancy Li/Ni antisite
下载PDF
Defect engineering on BiFeO_(3) through Na and V codoping for aqueous Na-ion capacitors
8
作者 Wenyun Wang Chao Yang +4 位作者 Shangjing Yu Daotong Han Wentao Qi Rui Ling Guangqiang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期453-463,I0011,共12页
Sodium with low cost and high abundance is considered as a substitute element of lithium for batteries and supercapacitors,which need the appropriate host materials to accommodate the relatively large Na^(+) ions.Comp... Sodium with low cost and high abundance is considered as a substitute element of lithium for batteries and supercapacitors,which need the appropriate host materials to accommodate the relatively large Na^(+) ions.Compared to Li^(+) storage,Na^(+) storage makes higher demands on the structural optimization of perovskite bismuth ferrite(BiFeO_(3)).We propose a novel strategy of defect engineering on BiFeO_(3) through Na and V codoping for high-efficiency Na^(+) storage,to reveal the roles of oxygen vacancies and V ions played in the enhanced electrochemical energy storage performances of Na-ion capacitors.The formation of the oxygen vacancies in the Na and V codoped BiFeO_(3)(denoted as NV-BFO),is promoted by Na doping and suppressed by V doping,which can be demonstrated by XPS and EPR spectra.By the first-principles calculations,the oxygen vacancies and V ions in NV-BFO are confirmed to substantially lower the Na^(+)migration energy barriers through the space and electric field effects,to effectively promote the Na^(+) transport in the crystals.Electrochemical kinetic analysis of the NV-BFO//NV-BFO capacitors indicates the dominant capacitive-controlled capacity,which depends on fast Na^(+) deintercalation-intercalation process in the NV-BFO electrode.The NV-BFO//NV-BFO capacitors open up a new avenue for developing highperformance Na-ion capacitors. 展开更多
关键词 BiFeO_(3) Na^(+) storage V doping Oxygen vacancy capacitor
下载PDF
All‑Covalent Organic Framework Nanofilms Assembled Lithium‑Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics
9
作者 Xiaoyang Xu Jia Zhang +6 位作者 Zihao Zhang Guandan Lu Wei Cao Ning Wang Yunmeng Xia Qingliang Feng Shanlin Qiao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期246-260,共15页
Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in superca... Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices. 展开更多
关键词 Covalent organic frameworks Lithium-ion capacitor Charge storage kinetic
下载PDF
Dual-ion carrier storage through Mg^(2+) addition for high-energy and long-life zinc-ion hybrid capacitor
10
作者 Junjie Zhang Xiang Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期179-185,共7页
Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modul... Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions.And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors.The zinc-ion capacitor with Mg^(2+)mixed solution delivers 82 mAh·g^(-1)capacity at 1 A·g^(-1) and maintains 91%of the original capacitance after 10000 cycling.It is superior to the other assembled zinc-ion devices in single-component electrolytes.The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs. 展开更多
关键词 zinc-ion hybrid capacitor MgSO_(4) ELECTROLYTE rate performance storage mechanism
下载PDF
MOF-derived porous graphitic carbon with optimized plateau capacity and rate capability for high performance lithium-ion capacitors
11
作者 Ge Chu Chaohui Wang +2 位作者 Zhewei Yang Lin Qin Xin Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期395-404,共10页
The development of anode materials with high rate capability and long charge-discharge plateau is the key to improve per-formance of lithium-ion capacitors(LICs).Herein,the porous graphitic carbon(PGC-1300)derived fro... The development of anode materials with high rate capability and long charge-discharge plateau is the key to improve per-formance of lithium-ion capacitors(LICs).Herein,the porous graphitic carbon(PGC-1300)derived from a new triply interpenetrated co-balt metal-organic framework(Co-MOF)was prepared through the facile and robust carbonization at 1300°C and washing by HCl solu-tion.The as-prepared PGC-1300 featured an optimized graphitization degree and porous framework,which not only contributes to high plateau capacity(105.0 mAh·g^(−1)below 0.2 V at 0.05 A·g^(−1)),but also supplies more convenient pathways for ions and increases the rate capability(128.5 mAh·g^(−1)at 3.2 A·g^(−1)).According to the kinetics analyses,it can be found that diffusion regulated surface induced capa-citive process and Li-ions intercalation process are coexisted for lithium-ion storage.Additionally,LIC PGC-1300//AC constructed with pre-lithiated PGC-1300 anode and activated carbon(AC)cathode exhibited an increased energy density of 102.8 Wh·kg^(−1),a power dens-ity of 6017.1 W·kg^(−1),together with the excellent cyclic stability(91.6%retention after 10000 cycles at 1.0 A·g^(−1)). 展开更多
关键词 metal-organic framework porous graphitic carbon optimized plateau capacity kinetic analysis lithium-ion capacitor
下载PDF
Vacancy defect MoSeTe embedded in N and F co-doped carbon skeleton for high performance sodium ion batteries and hybrid capacitors
12
作者 Dehui Yang Wentao Guo +6 位作者 Fei Guo Jiaming Zhu Gang Wang Hui Wang Guanghui Yuan Shenghua Ma Beibei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期652-664,I0014,共14页
Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.Howev... Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices. 展开更多
关键词 MoSeTe N F co-doped honeycomb carbon skeleton Sodium-ion batteries Sodium-ion hybrid capacitor
下载PDF
A high Li-ion diffusion kinetics in multidimensional and compact-structured electrodes via vacuum filtration casting
13
作者 Jieqiong Li Ting Ouyang +3 位作者 Lu Liu Shu Jiang Yongchao Huang M.-Sadeeq Balogun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期368-376,I0010,共10页
Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is ... Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture. 展开更多
关键词 Thick electrodes Carbon nanotubes li-ion diffusion co-efficient Vacuum filtration technique High areal capacity Lithium-ion batteries
下载PDF
Mitigation of Transients in Capacitor Coupled Substations Using Traditional RLC Filter Techniques
14
作者 Sinqobile Wiseman Nene Bolanle Tolulope Abe Agha Francis Nnachi 《Journal of Power and Energy Engineering》 2024年第5期60-75,共16页
This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly f... This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly from high-voltage (HV) transmission lines to low-voltage (LV) consumers through coupling capacitors and is said to be cost-effective as compared to conventional distribution networks. However, the functionality of such substations is susceptible to various transient phenomena, including ferroresonance and overvoltage occurrences. To address these challenges, the study uses simulations to evaluate the effectiveness of conventional resistor-inductor-capacitor (RLC) filter in mitigating hazardous overvoltage resulting from transients. The proposed methodology entails using standard RLC filter to suppress transients and its associated overvoltage risks. Through a series of MATLAB/Simulink simulations, the research emphasizes the practical effectiveness of this technique. The study examines the impact of transients under varied operational scenarios, including no-load switching conditions, temporary short-circuits, and load on/off events. The primary aim of the article is to assess the viability of using an established technology to manage system instabilities upon the energization of a CCS under no-load circumstances or in case of a short-circuit fault occurring on the primary side of the CCS distribution transformer. The findings underscore the effectiveness of conventional RLC filters in suppressing transients induced by the CCS no-load switching. 展开更多
关键词 capacitor Coupled Substation System Modeling FERRORESONANCE RLC filters Power Electronics Transients capacitor Voltage Transformers Transmission Lines
下载PDF
Coordinated Capacitor Voltage Balancing Method for Cascaded H-bridge Inverter with Supercapacitor and DC-DC Stage
15
作者 Ye Zhang Zixin Li +2 位作者 Fanqiang Gao Cong Zhao Yaohua Li 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期191-201,共11页
Cascaded H-bridge inverter(CHBI) with supercapacitors(SCs) and dc-dc stage shows significant promise for medium to high voltage energy storage applications. This paper investigates the voltage balance of capacitors wi... Cascaded H-bridge inverter(CHBI) with supercapacitors(SCs) and dc-dc stage shows significant promise for medium to high voltage energy storage applications. This paper investigates the voltage balance of capacitors within the CHBI, including both the dc-link capacitors and SCs. Balance control over the dc-link capacitor voltages is realized by the dcdc stage in each submodule(SM), while a hybrid modulation strategy(HMS) is implemented in the H-bridge to balance the SC voltages among the SMs. Meanwhile, the dc-link voltage fluctuations are analyzed under the HMS. A virtual voltage variable is introduced to coordinate the balancing of dc-link capacitor voltages and SC voltages. Compared to the balancing method that solely considers the SC voltages, the presented method reduces the dc-link voltage fluctuations without affecting the voltage balance of SCs. Finally, both simulation and experimental results verify the effectiveness of the presented method. 展开更多
关键词 Cascaded H-bridge inverter(CHBI) Hybrid modulation strategy(HMS) capacitor voltage balancing DClink voltage fluctuation Supercapacitor(SC)
下载PDF
Online Capacitor Voltage Transformer Measurement Error State Evaluation Method Based on In-Phase Relationship and Abnormal Point Detection
16
作者 Yongqi Liu Wei Shi +2 位作者 Jiusong Hu Yantao Zhao Pang Wang 《Smart Grid and Renewable Energy》 2024年第1期34-48,共15页
The assessment of the measurement error status of online Capacitor Voltage Transformers (CVT) within the power grid is of profound significance to the equitable trade of electric energy and the secure operation of the... The assessment of the measurement error status of online Capacitor Voltage Transformers (CVT) within the power grid is of profound significance to the equitable trade of electric energy and the secure operation of the power grid. This paper advances an online CVT error state evaluation method, anchored in the in-phase relationship and outlier detection. Initially, this method leverages the in-phase relationship to obviate the influence of primary side fluctuations in the grid on assessment accuracy. Subsequently, Principal Component Analysis (PCA) is employed to meticulously disentangle the error change information inherent in the CVT from the measured values and to compute statistics that delineate the error state. Finally, the Local Outlier Factor (LOF) is deployed to discern outliers in the statistics, with thresholds serving to appraise the CVT error state. Experimental results incontrovertibly demonstrate the efficacy of this method, showcasing its prowess in effecting online tracking of CVT error changes and conducting error state assessments. The discernible enhancements in reliability, accuracy, and sensitivity are manifest, with the assessment accuracy reaching an exemplary 0.01%. 展开更多
关键词 capacitor Voltage Transformer Measurement Error Online Monitoring Principal Component Analysis Local Outlier Factor
下载PDF
Model Predictive Control for Cascaded H-Bridge PV Inverter with Capacitor Voltage Balance
17
作者 Xinwei Wei Wanyu Tao +4 位作者 Xunbo Fu Xiufeng Hua Zhi Zhang Xiaodan Zhao Chen Qin 《Journal of Electronic Research and Application》 2024年第2期79-85,共7页
We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc... We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules. 展开更多
关键词 Model predictive control(MPC) Photovoltaic system Cascaded H-bridge(CHB)inverter capacitor voltage balance
下载PDF
Sustainable Lignin-Derived Carbon as Capacity-Kinetics Matched Cathode and Anode towards 4.5 V High-Performance Lithium-Ion Capacitors 被引量:1
18
作者 Fangyan Liu Pengfei Lu +7 位作者 Ying Zhang Feng Su Liangzhu Zhang Shuanghao Zheng Xiong Zhang Fangyuan Su Yanwei Ma Zhongshuai Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期98-105,共8页
The Li-ion capacitors(LICs)develop rapidly due to their double-high features of high-energy density and high-power density.However,the relative low capacity of cathode and sluggish kinetics of anode seriously impede t... The Li-ion capacitors(LICs)develop rapidly due to their double-high features of high-energy density and high-power density.However,the relative low capacity of cathode and sluggish kinetics of anode seriously impede the development of LICs.Herein,the precisely pore-engineered and heteroatomtailored defective hierarchical porous carbons(DHPCs)as large-capacity cathode and high-rate anode to construct high-performance dual-carbon LICs have been developed.The DHPCs are prepared based on triple-activation mechanisms by direct pyrolysis of sustainable lignin with urea to generate the interconnected hierarchical porous structure and plentiful heteroatominduced defects.Benefiting from these advanced merits,DHPCs show the well-matched high capacity and fast kinetics of both cathode and anode,exhibiting large capacities,superior rate capability and long-term lifespan.Both experimental and computational results demonstrate the strong synergistic effect of pore and dopants for Li storage.Consequently,the assembled dual-carbon LIC exhibits high voltage of 4.5 V,high-energy density of 208 Wh kg^(−1),ultrahigh power density of 53.4 kW kg^(−1)and almost zerodecrement cycling lifetime.Impressively,the full device with high mass loading of 9.4 mg cm^(−2)on cathode still outputs high-energy density of 187 Wh kg^(−1),demonstrative of their potential as electrode materials for high-performance electrochemical devices. 展开更多
关键词 capacity-kinetics matching defective hierarchical porous carbons high mass loading high power density li-ion capacitors
下载PDF
The key challenges and future opportunities of electrochemical capacitors
19
作者 Fangyan Liu Xinliang Feng Zhong-Shuai Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期459-461,I0012,共4页
Electrochemical capacitors(ECs)with unique merits of fast charge/discharge rate and long cyclability are one of the representative electrochemical energy storage systems,possessing wide applications in power electroni... Electrochemical capacitors(ECs)with unique merits of fast charge/discharge rate and long cyclability are one of the representative electrochemical energy storage systems,possessing wide applications in power electronics and automotive transportation,etc.[1,2].Furthermore. 展开更多
关键词 Electrochemical capacitors Electrical double layer capacitors Pseudocapacitors li-ion capacitors Microscale electrochemical capacitors
下载PDF
Potassium pre-inserted K1.04Mn8O16 as cathode materials for aqueous Li-ion and Na-ion hybrid capacitors 被引量:1
20
作者 Yamin Zhang Lina Chen +6 位作者 Chongyang Hao Xiaowen Zheng Yixuan Guo Long Chen Kangrong Lai Yinghe Zhang Lijie Ci 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期53-61,I0002,共10页
For the applications of aqueous Li-ion hybrid capacitors and Na-ion hybrid capacitors,potassium ions are pre-inserted into MnO2 tunnel structure,the as-prepared K1.04Mn8 O16 materials consist of nanoparticles and nano... For the applications of aqueous Li-ion hybrid capacitors and Na-ion hybrid capacitors,potassium ions are pre-inserted into MnO2 tunnel structure,the as-prepared K1.04Mn8 O16 materials consist of nanoparticles and nanorods were prepared by facile high-temperature solid-state reaction.The as-prepared materials were well studied and they show outstanding electrochemical behavior.We assembled hybrid supercapacitors with commercial activated carbon(YEC-8 A)as anode and K1.04Mn8 O16 as cathode.It shows high energy and power densities.Li-ion capacitors reach a high energy density of 127.61 Wh kg-1 at the power density of 99.86 W kg-1 and Na-ion capacitor obtains 170.96 Wh kg-1 at 133.79 W kg-1.In addition,the hybrid supercapacitors demonstrate excellent cycling performance which maintain 97%capacitance retention for Li-ion capacitor and 85%for Na-ion capacitor after 10,000 cycles. 展开更多
关键词 K1.04Mn8O16 Pre-inserted li-ion hybrid capacitors Na-ion hybrid capacitors Electrochemical behavior
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部