期刊文献+
共找到5,882篇文章
< 1 2 250 >
每页显示 20 50 100
A comprehensive review on the resynthesis of ternary cathode active materials from the leachate of Li-ion batteries
1
作者 Dongwoo Kim Hyeoncheol Joo +8 位作者 Chanmin Kim Seoa Kim Wan-Yi Kim Sangwoo Han Joongkil Park Soyeon Park Heechul Jung Sanghyuk Park Kyungjung Kwon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期446-463,I0010,共19页
This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recyclin... This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recycling method that directly produces CAM precursors from LIB leachate,is explored.This process encompasses six key steps,including pretreatment,leaching,purification,adjustment of metal concentrations,precursor synthesis,and sintering.The review also investigates the potential introduction of impurity elements during CAM resynthesis and provides tolerance levels for these impurities based on thorough reference analysis.Additionally,it addresses challenges related to the commercialization of the resynthesis process.Notably,this review represents the first comprehensive assessment of CAM resynthesis,including the systematic evaluation of 12 impurity elements(Fe,Li,Al,Cu,C,P,F,Na,Cl,S,Mg,and Zn).Overall,this comprehensive review is poised to support the commercial development of resynthesized CAMs by offering valuable guidelines for managing impurities and streamlining the purification process. 展开更多
关键词 li-ion battery Recycling Resynthesis LEACHATE IMPURITY
下载PDF
New insights into the pre-lithiation kinetics of single-crystalline Ni-rich cathodes for long-life Li-ion batteries
2
作者 Qiang Han Lele Cai +3 位作者 Zhaofeng Yang Yanjie Hu Hao Jiang Chunzhong Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期556-564,共9页
Developing single-crystalline Ni-rich cathodes is an effective strategy to improve the safety and cycle life of Li-ion batteries(LIBs).However,the easy-to-loss of Li and O in high-temperature lithiation results in uns... Developing single-crystalline Ni-rich cathodes is an effective strategy to improve the safety and cycle life of Li-ion batteries(LIBs).However,the easy-to-loss of Li and O in high-temperature lithiation results in unsatisfactory ordered layered structure and stoichiometry.Herein,we demonstrate the synthesis of highly-ordered and fully-stoichiometric single-crystalline LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)cathodes by the regulation of pre-lithiation kinetics.The well-balanced pre-lithiation kinetics have been proved to greatly improve the proportion of layered phase in the intermediate by inhibiting the formation of metastable spinel phase,which promoted the rapid transformation of the intermediate into highly-ordered layered SC-NCM83 in the subsequent lithiation process.After coating a layer of Li_(2)O–B_(2)O_(3),the resultant cathodes deliver superior cycling stability with 90.9%capacity retention at 1C after 300 cycles in pouch-type full batteries.The enhancement mechanism has also been clarified.These findings exhibit fundamental insights into the pre-lithiation kinetics process for guiding the synthesis of high-quality singlecrystalline Ni-rich cathodes. 展开更多
关键词 Single-crystalline cathode Ni-rich oxides Pre-lithiation li-ion batteries Surface modification
下载PDF
Revealing the key role of non-solvating diluents for fast-charging and low temperature Li-ion batteries
3
作者 Yuping Zhang Siyin Li +8 位作者 Junkai Shi Jiawei Lai Ziyue Zhuang Jingwen Liu Wenming Yang Liang Ma Yue-Peng Cai Jijian Xu Qifeng Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期171-180,共10页
Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to t... Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs. 展开更多
关键词 li-ion battery Fast-charging Low temperature Non-solvating diluent Shielding effect
下载PDF
Atomistic understanding of capacity loss in LiNiO_(2)for high-nickel Li-ion batteries:First-principles study
4
作者 彭率 陈丽娟 +1 位作者 何长春 杨小宝 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期625-629,共5页
Combining the first-principles calculations and structural enumeration with recognition,the delithiation process of LiNiO_(2)is investigated,where various supercell shapes are considered in order to obtain the formati... Combining the first-principles calculations and structural enumeration with recognition,the delithiation process of LiNiO_(2)is investigated,where various supercell shapes are considered in order to obtain the formation energy of Li_(x)NiO_(2).Meanwhile,the voltage profile is simulated and the ordered phases of lithium vacancies corresponding to concentrations of 1/4,2/5,3/7,1/2,2/3,3/4,5/6,and 6/7 are predicted.To understand the capacity decay in the experiment during the charge/discharge cycles,deoxygenation and Li/Ni antisite defects are calculated,revealing that the chains of oxygen vacancies will be energetically preferrable.It can be inferred that in the absence of oxygen atom in high delithiate state,the diffusion of Ni atoms is facilitated and the formation of Li/Ni antisite is induced. 展开更多
关键词 li-ion battery ground state formation energy oxygen vacancy Li/Ni antisite
下载PDF
Optimizing Average Electric Power During the Charging of Lithium-Ion Batteries Through the Taguchi Method
5
作者 Mohd H.S.Alrashdan 《Transactions of Tianjin University》 EI CAS 2024年第2期152-166,共15页
In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries fa... In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries faces a significant challenge owing to the need to increase average electric power during charging. This challenge results from the direct influence of the power level on the rate of chemical reactions occurring in the battery electrodes. In this study, the Taguchi optimization method was used to enhance the average electric power during the charging process of lithium-ion batteries. The Taguchi technique is a statistical strategy that facilitates the systematic and efficient evaluation of numerous experimental variables. The proposed method involved varying seven input factors, including positive electrode thickness, positive electrode material, positive electrode active material volume fraction, negative electrode active material volume fraction, separator thickness, positive current collector thickness, and negative current collector thickness. Three levels were assigned to each control factor to identify the optimal conditions and maximize the average electric power during charging. Moreover, a variance assessment analysis was conducted to validate the results obtained from the Taguchi analysis. The results revealed that the Taguchi method was an eff ective approach for optimizing the average electric power during the charging of lithium-ion batteries. This indicates that the positive electrode material, followed by the separator thickness and the negative electrode active material volume fraction, was key factors significantly infl uencing the average electric power during the charging of lithium-ion batteries response. The identification of optimal conditions resulted in the improved performance of lithium-ion batteries, extending their potential in various applications. Particularly, lithium-ion batteries with average electric power of 16 W and 17 W during charging were designed and simulated in the range of 0-12000 s using COMSOL Multiphysics software. This study efficiently employs the Taguchi optimization technique to develop lithium-ion batteries capable of storing a predetermined average electric power during the charging phase. Therefore, this method enables the battery to achieve complete charging within a specific timeframe tailored to a specificapplication. The implementation of this method can save costs, time, and materials compared with other alternative methods, such as the trial-and-error approach. 展开更多
关键词 Lithium-ion batteries Average electric power during charging Taguchi method COMSOL Multiphysics software C rate L27 orthogonal array
下载PDF
A class of Ga-Al-P-based compounds with disordered lattice as advanced anode materials for Li-ion batteries 被引量:1
6
作者 Yanhong Li Peixun Xiong +2 位作者 Lei Zhang Songliu Yuan Wenwu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期12-21,共10页
Phosphides possess large reversible capacity, small voltage hysteresis, and high energy efficiency, thus promising to be new anode candidates to replace commercial graphite for Li-ion batteries(LIBs).Through a facile ... Phosphides possess large reversible capacity, small voltage hysteresis, and high energy efficiency, thus promising to be new anode candidates to replace commercial graphite for Li-ion batteries(LIBs).Through a facile mechanochemistry method, we prepare a novel ternary phosphide of Ga0.5Al0.5P whose crystalline structure is determined to be a cation-disordered cubic zinc sulfide structure according to XRD refinement. As an anode for LIBs, the Ga0.5Al0.5P delivers a reversible capacity of 1,352 mA h g^(-1)at100 mA g^(-1)with an initial Coulombic efficiency(ICE) up to 90.0% based on a reversible Li-storage mechanism integrating intercalation and subsequent conversion processes as confirmed by various characterizations techniques including in-situ XRD, ex-situ Raman, and XPS and electrochemical characterizations.Graphite-modified Ga0.5Al0.5P exhibits a long-lasting cycling stability of retaining 1,182 mA h g^(-1)after300 cycles at 100 m A g^(-1), and 625 mA h g^(-1)after 800 cycles at 2,000 mA g^(-1), and a high-rate performance of remaining 342 m A h g^(-1)at 20,000 mA g^(-1). The outstanding electrochemical performances can be attributed to enhanced reaction kinetics enabled by the capacitive behaviors and the faster Liion diffusion enabled by the cation-mixing. Importantly, by tuning the cationic ratio, we develop a novel series of cation-mixed compounds of Ga_(1/3)Al_(2/3)P, Ga_(1/4)Al_(3/4)P, Ga_(1/5)Al_(4/5)P, Ga_(2/3)Al_(1/3)P, Ga_(3/4)Al_(1/4)P, and Ga_(4/5)Al_(1/5)P, which demonstrate large capacity, high ICE, and suitable anode potentials. Broadly, these compounds with disordered lattices probably present novel physicochemical properties, and high electrochemical performances, thus providing a new perspective for new materials design. 展开更多
关键词 Multinary phosphides Disordered lattice ANODE li-ion batteries
下载PDF
Insight into the effect of thick graphite electrodes towards high-performance cylindrical Ni-rich NCA90 Li-ion batteries 被引量:1
7
作者 Nattanon Joraleechanchai Thitiphum Sangsanit +2 位作者 Kan Homlamai Purin Krapong Montree Sawangphruk 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期322-333,I0009,共13页
This study explored the complex effect of graphite tortuosity on the electrochemical performance of Ni-rich NCA90 Li-ion batteries(LIBs).Different levels of graphite anode tortuosity were analyzed,revealing that low-t... This study explored the complex effect of graphite tortuosity on the electrochemical performance of Ni-rich NCA90 Li-ion batteries(LIBs).Different levels of graphite anode tortuosity were analyzed,revealing that low-tortuosity electrodes had better graphite utilization.The in-plane tortuosities of the graphite anode electrodes examined were 1.70,1.94,2.05,and 2.18,while their corresponding through-plane tortuosities were 4.74,6.94,8.19,and 9.80.In-operando X-ray diffraction and differential electrochemical mass spectrometry were employed to investigate the charge storage mechanism and gas evolution.The study revealed that while graphite electrode tortuosity impacted the amount of Li present in the lithiated graphite phase due to diffusion constraints,it did not affect gas generation.The Li-ion utilization in low-tortuosity electrodes was higher than that in high-tortuosity electrodes because of solid-diffusion limitations.Additionally,the galvanostatic intermittent titration technique(GITT) was employed to investigate a lithium-ion diffusion coefficient.Our results indicate that the lithium-ion diffusion coefficient exhibits a significant difference only during LiC_(6) phase transition.We also observed that the use of a lower tortuosity electrode leads to improved lithium-ion insertion.Consequently,graphite utilization is influenced by the porous electrode design.Safety tests adhering to UN38.3 guidelines verified battery safety.The study demonstrated the practical application of optimized NCA90 LIB cells with diverse graphite electrode tortuosities in a high-performance Lamborghini GoKart,paving the way for further advancements in Ni-rich LIB technology. 展开更多
关键词 li-ion batteries TORTUOSITY Ni-rich NCA90 cathode On-line gas detection In-operando XRD
下载PDF
Research on Performance Optimization of Liquid Cooling and Composite Phase Change Material Coupling Cooling Thermal Management System for Vehicle Power Battery 被引量:1
8
作者 Gang Wu Feng Liu +3 位作者 Sijie Li Na Luo Zhiqiang Liu Yuqaing Li 《Journal of Renewable Materials》 SCIE EI 2023年第2期707-730,共24页
The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pac... The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target.The initial analysis of the battery pack at a 5C discharge rate,the influence of the single cell to cooling tube distance,the number of cooling tubes,inlet coolant temperature,the coolant flow rate,and other factors on the heat dissipation performance of the battery pack,initially determined a reasonable value for each design parameter.A control strategy is used to regulate the inlet flow rate and coolant temperature of the liquid cooling system in order to make full use of the latent heat of the composite PCM and reduce the pump’s energy consumption.The simulation results show that the maximum battery pack temperature of 309.8 K and the temperature difference of 4.6 K between individual cells with the control strategy are in the optimal temperature operating range of the power battery,and the utilization rate of the composite PCM is up to 90%. 展开更多
关键词 power battery thermal management phase change materials liquid cooling
下载PDF
Overview of multi-stage charging strategies for Li-ion batteries 被引量:1
9
作者 Muhammad Usman Tahir Ariya Sangwongwanich +1 位作者 Daniel-Ioan Stroe Frede Blaabjerg 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期228-241,共14页
To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the... To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the depletion of fossil fuels have become significant global problems.Lithium-ion batteries(LIBs)have been distinguished themselves from alternative energy storage technologies for electric vehicles(EVs) due to superior qualities like high energy and power density,extended cycle life,and low maintenance cost to a competitive price.However,there are still certain challenges to be solved,like EV fast charging,longer lifetime,and reduced weight.For fast charging,the multi-stage constant current(MSCC) charging technique is an emerging solution to improve charging efficiency,reduce temperature rise during charging,increase charging/discharging capacities,shorten charging time,and extend the cycle life.However,there are large variations in the implementation of the number of stages,stage transition criterion,and C-rate selection for each stage.This paper provides a review of these problems by compiling information from the literature.An overview of the impact of different design parameters(number of stages,stage transition,and C-rate) that the MSCC charging techniques have had on the LIB performance and cycle life is described in detail and analyzed.The impact of design parameters on lifetime,charging efficiency,charging and discharging capacity,charging speed,and rising temperature during charging is presented,and this review provides guidelines for designing advanced fast charging strategies and determining future research gaps. 展开更多
关键词 Multi-stage constant current(MSCC)charging Electric vehicles(EVs) li-ion batteries(LIBs) Fast charging strategies
下载PDF
Nitrogen-doped carbon stabilized Li Fe0.5Mn0.5PO4/rGO cathode materials for high-power Li-ion batteries 被引量:3
10
作者 Haifeng Yu Zhaofeng Yang +2 位作者 Huawei Zhu Hao Jiang Chunzhong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第7期1935-1940,共6页
Exploring high ion/electron conductive olivine-type transition metal phosphates is of vital significance to broaden their applicability in rapid-charging devices.Herein,we report an interface engineered Li Fe0.5Mn0.5P... Exploring high ion/electron conductive olivine-type transition metal phosphates is of vital significance to broaden their applicability in rapid-charging devices.Herein,we report an interface engineered Li Fe0.5Mn0.5PO4/rGO@C cathode material by the synergistic effects of r GO and polydopamine-derived N-doped carbon.The well-distributed Li Fe0.5Mn0.5PO4nanoparticles are tightly anchored on r GO nanosheet benefited by the coating of N-doped carbon layer.The design of such an architecture can effectively suppress the agglomeration of nanoparticles with a shortened Li+transfer path.Meantime,the high-speed conducting network has been constructed by r GO and N-doped carbon,which exhibits the face-to-face contact with Li Fe0.5Mn0.5PO4nanoparticles,guaranteeing the rapid electron transfer.These profits endow the Li Fe0.5Mn0.5PO4/rGO@C hybrids with a fast charge-discharge ability,e.g.a high reversible capacity of 105 m Ah·g^-1at 10 C,much higher than that of the Li Fe0.5Mn0.5PO4@C nanoparticles(46 mA·h·g^-1).Furthermore,a 90.8%capacity retention can be obtained even after cycling 500 times at 2 C.This work gives a new avenue to fabricate transition metal phosphate with superior electrochemical performance for high-power Li-ion batteries. 展开更多
关键词 Cathode materials High power density CARBON Long cycle life li-ion batteries
下载PDF
Surface-Engineered Li4Ti5O12 Nanostructures for High-Power Li-Ion Batteries 被引量:5
11
作者 Binitha Gangaja Shantikumar Nair Dhamodaran Santhanagopalan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期235-245,共11页
Materials with high-power charge–discharge capabilities are of interest to overcome the power limitations of conventional Li-ion batteries.In this study,a unique solvothermal synthesis of Li4Ti5O12 nanoparticles is p... Materials with high-power charge–discharge capabilities are of interest to overcome the power limitations of conventional Li-ion batteries.In this study,a unique solvothermal synthesis of Li4Ti5O12 nanoparticles is proposed by using an off-stoichiometric precursor ratio.A Li-deficient off-stoichiometry leads to the coexistence of phaseseparated crystalline nanoparticles of Li4Ti5O12 and TiO2 exhibiting reasonable high-rate performances.However,after the solvothermal process,an extended aging of the hydrolyzed solution leads to the formation of a Li4Ti5O12 nanoplate-like structure with a self-assembled disordered surface layer without crystalline TiO2.The Li4Ti5O12 nanoplates with the disordered surface layer deliver ultrahighrate performances for both charging and discharging in the range of 50–300C and reversible capacities of 156 and 113 mAh g−1 at these two rates,respectively.Furthermore,the electrode exhibits an ultrahigh-charging-rate capability up to 1200C(60 mAh g−1;discharge limited to 100C).Unlike previously reported high-rate half cells,we demonstrate a high-power Li-ion battery by coupling Li4Ti5O12 with a high-rate LiMn2O4 cathode.The full cell exhibits ultrafast charging/discharging for 140 and 12 s while retaining 97 and 66% of the anode theoretical capacity,respectively.Room-(25℃),low-(−10℃),and high-(55℃)temperature cycling data show the wide temperature operation range of the cell at a high rate of 100C. 展开更多
关键词 Ultrafast charging li-ion battery Lithium titanate Off-stoichiometric synthesis Surface chemistry
下载PDF
Single-Phase Ternary Compounds with a Disordered Lattice and Liquid Metal Phase for High-Performance Li-Ion Battery Anodes
12
作者 Yanhong Li Lei Zhang +8 位作者 Hung-Yu Yen Yucun Zhou Gun Jang Songliu Yuan Jeng-Han Wang Peixun Xiong Meilin Liu Ho Seok Park Wenwu Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期36-50,共15页
Si is considered as the promising anode materials for lithium-ion batteries(LIBs)owing to their high capacities of 4200 mAh g-1and natural abundancy.However,severe electrode pulverization and poor electronic and Li-io... Si is considered as the promising anode materials for lithium-ion batteries(LIBs)owing to their high capacities of 4200 mAh g-1and natural abundancy.However,severe electrode pulverization and poor electronic and Li-ionic conductivities hinder their practical applications.To resolve the afore-mentioned problems,we first demonstrate a cation-mixed disordered lattice and unique Li storage mechanism of single-phase ternary GaSiP_(2)compound,where the liquid metallic Ga and highly reactive P are incorporated into Si through a ball milling method.As confirmed by experimental and theoretical analyses,the introduced Ga and P enables to achieve the stronger resistance against volume variation and metallic conductivity,respectively,while the cation-mixed lattice provides the faster Li-ionic diffusion capability than those of the parent GaP and Si phases.The resulting GaSiP_(2)electrodes delivered the high specific capacity of 1615 mAh g-1and high initial Coulombic efficiency of 91%,while the graphite-modified GaSiP_(2)(GaSiP_(2)@C)achieved 83%of capacity retention after 900 cycles and high-rate capacity of 800 at 10,000 mA g-1.Furthermore,the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)//Ga SiP_(2)@C full cells achieved the high specific capacity of 1049 mAh g-1after 100 cycles,paving a way for the rational design of high-performance LIB anode materials. 展开更多
关键词 Multinary compounds Liquid metal GaSiP_(2) Disordered lattice li-ion batteries
下载PDF
Photoinduced Cu^(+)/Cu^(2+)interconversion for enhancing energy conversion and storage performances of CuO based Li-ion battery
13
作者 Qiuman Zhang Meng Wei +7 位作者 Qianwen Dong Qiongzhi Gao Xin Cai Shengsen Zhang Teng Yuan Feng Peng Yueping Fang Siyuan Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期83-91,共9页
Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper... Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper oxide(CuO)is one of the most popular candidates in both LIBs and photocatalysis.While CuO based PA-LIBs have never been reported yet.Herein,one-dimensional(1D)CuO nanowire arrays in situ grown on a three-dimensional(3D)copper foam support were employed as dualfunctional photoanode for both‘solar-to-electricity’and‘electricity-to-chemical’energy conversion in the PA-LIBs.It is found that light energy can be indeed stored and converted into electrical energy through the assembled CuO based PA-LIBs.Without external power source,the photo conversion efficiency of CuO based photocell reaches about 0.34%.Impressively,at a high current density of 4000 m A g^(-1),photoassisted discharge and charge specific capacity of CuO based PA-LIBs respectively receive 64.01%and 60.35%enhancement compared with the net electric charging and discharging process.Mechanism investigation reveals that photogenerated charges from CuO promote the interconversion between Cu^(2+)and Cu^(+)during the discharging/charging process,thus forcing the lithium storage reaction more completely and increasing the specific capacity of the PA-LIBs.This work can provide a general principle for the development of other high-efficient semiconductor-based PA-LIBs. 展开更多
关键词 li-ion batteries Energy conversion and storage Photo rechargeable Electrochemistry Copper oxide
下载PDF
Self-actuating protection mechanisms for safer lithium-ion batteries
14
作者 Yang Luo Chunchun Sang +3 位作者 Kehan Le Hao Chen Hui Li Xinping Ai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期181-198,共18页
Safety issue is still a problem nowadays for the large-scale application of lithium-ion batteries(LIBs)in electric vehicles and energy storage stations.The unsafe behaviors of LIBs arise from the thermal run-away,whic... Safety issue is still a problem nowadays for the large-scale application of lithium-ion batteries(LIBs)in electric vehicles and energy storage stations.The unsafe behaviors of LIBs arise from the thermal run-away,which is intrinsically triggered by the overcharging and overheating.To improve the safety of LIBs,various protection strategies based on self-actuating reaction control mechanisms(SRCMs)have been proposed,including redox shuttle,polymerizable monomer additive,potential-sensitive separator,thermal shutdown separator,positive-temperature-coefficient electrode,thermally polymerizable addi-tive,and reversible thermal phase transition electrolyte.As build-in protection mechanisms,these meth-ods can sensitively detect either the temperature change inside battery or the potential change of the electrode,and spontaneously shut down the electrode reaction at risky conditions,thus preventing the battery from going into thermal runaway.Given their advantages in enhancing the intrinsic safety of LIBs,this paper overviews the research progresses of SRCMs after a brief introduction of thermal runaway mechanism and limitations of conventional thermal runaway mitigating measures.More importantly,the current states and issues,key challenges,and future developing trends of SRCTs are also discussed and outlined from the viewpoint of practical application,aiming at providing insights and guidance for developing more effective SRCMs for LIBs. 展开更多
关键词 li-ion battery SAFETY Thermal runaway Thermal protection Overcharge protection
下载PDF
Progress,challenges,and prospects of spent lithium-ion batteries recycling:A review
15
作者 Pengwei Li Shaohua Luo +7 位作者 Lin Zhang Qiuyue Liu Yikai Wang Yicheng Lin Can Xu Jia Guo Peam Cheali Xiaoning Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期144-171,I0005,共29页
The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,batter... The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization. 展开更多
关键词 Spent li-ion batteries RECYCLE Direct regeneration High-value conversion Functional materials
下载PDF
A high Li-ion diffusion kinetics in multidimensional and compact-structured electrodes via vacuum filtration casting
16
作者 Jieqiong Li Ting Ouyang +3 位作者 Lu Liu Shu Jiang Yongchao Huang M.-Sadeeq Balogun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期368-376,I0010,共10页
Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is ... Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture. 展开更多
关键词 Thick electrodes Carbon nanotubes li-ion diffusion co-efficient Vacuum filtration technique High areal capacity Lithium-ion batteries
下载PDF
Abnormal State Detection in Lithium-ion Battery Using Dynamic Frequency Memory and Correlation Attention LSTM Autoencoder
17
作者 Haoyi Zhong Yongjiang Zhao Chang Gyoon Lim 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1757-1781,共25页
This paper addresses the challenge of identifying abnormal states in Lithium-ion Battery(LiB)time series data.As the energy sector increasingly focuses on integrating distributed energy resources,Virtual Power Plants(... This paper addresses the challenge of identifying abnormal states in Lithium-ion Battery(LiB)time series data.As the energy sector increasingly focuses on integrating distributed energy resources,Virtual Power Plants(VPP)have become a vital new framework for energy management.LiBs are key in this context,owing to their high-efficiency energy storage capabilities essential for VPP operations.However,LiBs are prone to various abnormal states like overcharging,over-discharging,and internal short circuits,which impede power transmission efficiency.Traditional methods for detecting such abnormalities in LiB are too broad and lack precision for the dynamic and irregular nature of LiB data.In response,we introduce an innovative method:a Long Short-Term Memory(LSTM)autoencoder based on Dynamic Frequency Memory and Correlation Attention(DFMCA-LSTM-AE).This unsupervised,end-to-end approach is specifically designed for dynamically monitoring abnormal states in LiB data.The method starts with a Dynamic Frequency Fourier Transform module,which dynamically captures the frequency characteristics of time series data across three scales,incorporating a memory mechanism to reduce overgeneralization of abnormal frequencies.This is followed by integrating LSTM into both the encoder and decoder,enabling the model to effectively encode and decode the temporal relationships in the time series.Empirical tests on a real-world LiB dataset demonstrate that DFMCA-LSTM-AE outperforms existing models,achieving an average Area Under the Curve(AUC)of 90.73%and an F1 score of 83.83%.These results mark significant improvements over existing models,ranging from 2.4%–45.3%for AUC and 1.6%–28.9%for F1 score,showcasing the model’s enhanced accuracy and reliability in detecting abnormal states in LiB data. 展开更多
关键词 Lithium-ion battery abnormal state detection autoencoder virtual power plants LSTM
下载PDF
Analysis of Potential Causes of Safety Failure of New Energy Vehicle Power Batteries
18
作者 Shaoqing Xiang 《Journal of Electronic Research and Application》 2023年第3期13-19,共7页
The aim of this paper is to analyze the potential reasons for the safety failure of batteries for new-energy vehicles.Firstly,the importance and popularization of new energy batteries are introduced,and the importance... The aim of this paper is to analyze the potential reasons for the safety failure of batteries for new-energy vehicles.Firstly,the importance and popularization of new energy batteries are introduced,and the importance of safety failure issues is drawn out.Then,the composition and working principle of the battery is explained in detail,which provides the basis for the subsequent analysis.Then,the potential impacts of factors such as overcharge and over-discharge,high and low temperature environments,internal faults,and external shocks and vibrations on the safety of the batteries are analyzed.Finally,some common safety measures and solutions are proposed to improve the safety of new energy batteries,in hopes of improving the safety of batteries for new-energy vehicle. 展开更多
关键词 New-energy vehicle power battery Safety failure Potential cause Analysis and research
下载PDF
The SOC Estimation of Power Li-Ion Battery Based on ANFIS Model
19
作者 Tiezhou Wu Mingyue Wang +1 位作者 Qing Xiao Xieyang Wang 《Smart Grid and Renewable Energy》 2012年第1期51-55,共5页
On basis of traditional battery performance model, paper analyzed the advantage and disadvantage of SOC estimation methods, introduced Adaptive Neuro-Fuzzy Inference Systems which integrated artificial neural network ... On basis of traditional battery performance model, paper analyzed the advantage and disadvantage of SOC estimation methods, introduced Adaptive Neuro-Fuzzy Inference Systems which integrated artificial neural network and fuzzy logic have predicted SOC of battery. It’s a battery residual capacity model with more generalization ability, adaptability and high precision. By analyzing the battery charge and discharge process, the key parameters of SOC are determined and the experimental model is modified in MATLAB platform.Experimental results show that the difference of SOC prediction and actual SOC is below 3%.The model can reflect the characteristics curve of the battery. SOC estimation algorithm can meet the requirements for precision. The results have a high practical value. 展开更多
关键词 STATE of CHARGE ANFIS ESTIMATION Method li-ion battery
下载PDF
Si-Based Anode Materials for Li-Ion Batteries:A Mini Review 被引量:19
20
作者 Delong Ma Zhanyi Cao Anming Hu 《Nano-Micro Letters》 SCIE EI CAS 2014年第4期347-358,共12页
Si has been considered as one of the most attractive anode materials for Li-ion batteries(LIBs) because of its high gravimetric and volumetric capacity. Importantly, it is also abundant, cheap, and environmentally ben... Si has been considered as one of the most attractive anode materials for Li-ion batteries(LIBs) because of its high gravimetric and volumetric capacity. Importantly, it is also abundant, cheap, and environmentally benign. In this review, we summarized the recent progress in developments of Si anode materials. First, the electrochemical reaction and failure are outlined, and then, we summarized various methods for improving the battery performance, including those of nanostructuring, alloying, forming hierarchic structures, and using suitable binders. We hope that this review can be of benefit to more intensive investigation of Si-based anode materials. 展开更多
关键词 li-ion batteries ANODE Si High capacity NANOMATERIALS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部