期刊文献+
共找到2,750篇文章
< 1 2 138 >
每页显示 20 50 100
Difficulties, strategies, and recent research and development of layered sodium transition metal oxide cathode materials for high-energy sodium-ion batteries 被引量:2
1
作者 Kouthaman Mathiyalagan Dongwoo Shin Young-Chul Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期40-57,I0003,共19页
Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devi... Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devices(PEDs),etc.In recent decades,Lithium-ion batteries(LIBs) have been extensively utilized in largescale energy storage devices owing to their long cycle life and high energy density.However,the high cost and limited availability of Li are the two main obstacles for LIBs.In this regard,sodium-ion batteries(SIBs) are attractive alternatives to LIBs for large-scale energy storage systems because of the abundance and low cost of sodium materials.Cathode is one of the most important components in the battery,which limits cost and performance of a battery.Among the classified cathode structures,layered structure materials have attracted attention because of their high ionic conductivity,fast diffusion rate,and high specific capacity.Here,we present a comprehensive review of the classification of layered structures and the preparation of layered materials.Furthermore,the review article discusses extensively about the issues of the layered materials,namely(1) electrochemical degradation,(2) irreversible structural changes,and(3) structural instability,and also it provides strategies to overcome the issues such as elemental phase composition,a small amount of elemental doping,structural design,and surface alteration for emerging SIBs.In addition,the article discusses about the recent research development on layered unary,binary,ternary,quaternary,quinary,and senary-based O3-and P2-type cathode materials for high-energy SIBs.This review article provides useful information for the development of high-energy layered sodium transition metal oxide P2 and O3-cathode materials for practical SIBs. 展开更多
关键词 O3-type P2-type Cathode materials Sodium-ion batteries layered structure
下载PDF
Moiré superlattices arising from growth induced by screw dislocations in layered materials
2
作者 田伏钰 Muhammad Faizan +2 位作者 贺欣 孙远慧 张立军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期72-77,共6页
Moiré superlattices(MSLs) are modulated structures produced from homogeneous or heterogeneous two-dimensional layers stacked with a twist angle and/or lattice mismatch. Enriching the methods for fabricating MSL a... Moiré superlattices(MSLs) are modulated structures produced from homogeneous or heterogeneous two-dimensional layers stacked with a twist angle and/or lattice mismatch. Enriching the methods for fabricating MSL and realizing the unique emergent properties are key challenges in its investigation. Here we recommend that the spiral dislocation driven growth is another optional method for the preparation of high quality MSL samples. The spiral structure stabilizes the constant out-of-plane lattice distance, causing the variations in electronic and optical properties. Taking SnS_(2) MSL as an example, we find prominent properties including large band gap reduction(~ 0.4 e V) and enhanced optical activity. Firstprinciples calculations reveal that these unusual properties can be ascribed to the locally enhanced interlayer interaction associated with the Moiré potential modulation. We believe that the spiral dislocation driven growth would be a powerful method to expand the MSL family and broaden their scope of application. 展开更多
关键词 Moirésuperlattices interlayer interaction spiral dislocation layered materials
下载PDF
Recent Progress and Regulation Strategies of Layered Materials as Cathode of Aqueous Zinc-Ion Batteries
3
作者 Yuan Yuan Si Wu +2 位作者 Xiaoxue Song Jin Yong Lee Baotao Kang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期14-31,共18页
Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The lay... Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The layered cathode materials of ZIBs hold a stable structure during charge and discharge reactions owing to the ultrafast and straightforward(de)intercalation-type storage mechanism of Zn^(2+)ions in their tunable interlayer spacing and their abilities to accommodate other guest ions or molecules.Nevertheless,the challenges of inadequate energy density,dissolution of active materials,uncontrollable byproducts,increased internal pressure,and a large de-solvation penalty have been deemed an obstacle to the development of ZIBs.In this review,recent strategies on the structure regulation of layered materials for aqueous zinc-ion energy storage devices are systematically summarized.Finally,critical science challenges and future outlooks are proposed to guide and promote the development of advanced cathode materials for ZIBs. 展开更多
关键词 layered cathode materials modifying strategies structure regulation zinc-ion batteries
下载PDF
Recent progress in Ni-rich layered oxides and related cathode materials for Li-ion cells
4
作者 Boyang Fu Maciej Moździerz +1 位作者 Andrzej Kulka Konrad Świerczek 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2345-2367,共23页
Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the... Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the energy density,cyclability,charging speed,reduced costs,as well as safety and stability,already contribute to the wider adoption of LIBs,which extends nowadays beyond mobile electronics,power tools,and electric vehicles,to the new range of applications,including grid storage solutions.With numerous published papers and broad reviews already available on the subject of Ni-rich oxides,this review focuses more on the most recent progress and new ideas presented in the literature references.The covered topics include doping and composition optimization,advanced coating,concentration gradient and single crystal materials,as well as innovations concerning new electrolytes and their modification,with the application of Ni-rich cathodes in solid-state batteries also discussed.Related cathode materials are briefly mentioned,with the high-entropy approach and zero-strain concept presented as well.A critical overview of the still unresolved issues is given,with perspectives on the further directions of studies and the expected gains provided. 展开更多
关键词 lithium-ion batteries cathode materials nickel-rich layered oxides recent progress critical issues improvement strategies
下载PDF
Cycling performance of layered oxide cathode materials for sodium-ion batteries
5
作者 Jinpin Wu Junhang Tian +1 位作者 Xueyi Sun Weidong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1720-1744,共25页
Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the applicat... Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the application prospects of batteries.However,facing challenges,including phase transitions,ambient stability,side reactions,and irreversible anionic oxygen activity,the cycling performance of layered oxide cathode materials still cannot meet the application requirements.Therefore,this review proposes several strategies to address these challenges.First,bulk doping is introduced from three aspects:cationic single doping,anionic single doping,and multi-ion doping.Second,homogeneous surface coating and concentration gradient modification are reviewed.In addition,methods such as mixed structure design,particle engineering,high-entropy material construction,and integrated modification are proposed.Finally,a summary and outlook provide a new horizon for developing and modifying layered oxide cathode materials. 展开更多
关键词 sodium-ion battery layered oxide materials cycling performance bulking doping surface coating concentration gradient mixed structure high-entropy
下载PDF
Synthesis and electrochemical performance of La_(2)CuO_(4)as a promising coating material for high voltage Li-rich layered oxide cathodes
6
作者 郭福亮 卢嘉泽 +4 位作者 苏美华 陈约 郑杰允 尹良 李泓 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期124-132,共9页
The structural transformations,oxygen releasing and side reactions with electrolytes on the surface are considered as the main causes of the performance degradation of Li-rich layered oxides(LROs)cathodes in Li-ion ba... The structural transformations,oxygen releasing and side reactions with electrolytes on the surface are considered as the main causes of the performance degradation of Li-rich layered oxides(LROs)cathodes in Li-ion batteries.Thus,stabilizing the surfaces of LROs is the key to realize their practical application in high energy density Li-ion batteries.Surface coating is regarded as one of the most effective strategies for high voltage cathodes.The ideal coating materials should prevent cathodes from electrolyte corrosion and possess both electronic and Li-ionic conductivities simultaneously.However,commonly reported coating materials are unable to balance these functions well.Herein,a new type of coating material,La_(2)CuO_(4)was introduced to mitigate the surface issues of LROs for the first time,due to its superb electronic conductivity(26-35 mS·cm^(-1))and lithium-ionic diffusion coefficient(10^(-12)-10^(-13)cm^(2)·s^(-1)).After coating with the La_(2)CuO_(4),the capacity retention of Li_(1.2)Ni_(0.54)Co_(0.13)Mn_(0.13)O_(2)cathode was increased to 85.9%(compared to 79.3%of uncoated cathode)after 150 cycles in the voltage range of 2.0-4.8 V.In addition,only negligible degradations on the deliverable capacity and rate capability were observed. 展开更多
关键词 La_(2)CuO_(4) electronic conductivity Li-ionic conductivity li-rich layered oxides high voltage
下载PDF
Dependence of Initial Capacity Irreversibility on Oxygen Framework Chemistry in Li-Rich Layered Cathode Oxides
7
作者 Xiao Li Yibin Zhang +4 位作者 Bao Qiu Guoxin Chen Yuhuan Zhou Qingwen Gu Zhaoping Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期57-67,共11页
The undesirable capacity loss after first cycle is universal among layered cathode materials,which results in the capacity and energy decay.The key to resolving this obstacle lies in understanding the effect and origi... The undesirable capacity loss after first cycle is universal among layered cathode materials,which results in the capacity and energy decay.The key to resolving this obstacle lies in understanding the effect and origin of specific active Li sites during discharge process.In this study,focusing on Ah-level pouch cells for reliability,an ultrahigh initial Coulombic efficiency(96.1%)is achieved in an archetypical Li-rich layered oxide material.Combining the structure and electrochemistry analysis,we demonstrate that the achievement of high-capacity reversibility is a kinetic effect,primarily related to the sluggish Li mobility during oxygen reduction.Activating oxygen reduction through small density would induce the oxygen framework contraction,which,according to Pauli repulsion,imposes a great repulsive force to hinder the transport of tetrahedral Li.The tetrahedral Li storage upon deep oxygen reduction is experimentally visualized and,more importantly,contributes to 6%Coulombic efficiency enhancement as well as 10%energy density improvement for pouch cells,which shows great potentials breaking through the capacity and energy limitation imposed by intercalation chemistry. 展开更多
关键词 irreversible capacity loss Li transport kinetics li-rich layered oxides oxygen framework chemistry tetrahedral Li
下载PDF
Inhibiting Voltage Decay in Li-Rich Layered Oxide Cathode:From O3-Type to O2-Type Structural Design
8
作者 Guohua Zhang Xiaohui Wen +2 位作者 Yuheng Gao Renyuan Zhang Yunhui Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期81-102,共22页
Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.H... Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed. 展开更多
关键词 Lithium-ion batteries li-rich layered oxide Voltage decay Migration of transition metal ions O2-type structural design
下载PDF
V-doped Co-free Li-rich layered oxide with enhanced oxygen redox reversibility for excellent voltage stability and high initial Coulombic efficiency
9
作者 Liping Tan Wenzhao Huang +5 位作者 Xiaoyan Xie Xiaola Li Ziyang Liang Zhan Lin Chenyu Liu Dong Luo 《Energy Materials and Devices》 2024年第3期97-108,共12页
Li-rich Mn-based oxides(LRMOs)hold great promise as next-generation cathode materials for high-energy Li-ion batteries because of their low cost and high capacity.Nevertheless,the practical application of LRMOs is imp... Li-rich Mn-based oxides(LRMOs)hold great promise as next-generation cathode materials for high-energy Li-ion batteries because of their low cost and high capacity.Nevertheless,the practical application of LRMOs is impeded by their low initial Coulombic efficiency and rapid voltage decay.Herein,a V-doped layered-spinel coherent layer is constructed on the surface of a Co-free LRMO through a simple treatment with NH_(4)VO_(3).The layered-spinel coherent layer with 3D ion channels enhanced Li+diffusion efficiency,mitigates surface-inter-face reactions and suppresses irreversible oxygen release.Notably,V-doping significantly reduces the Bader charge of oxygen atoms,thereby impeding excessive oxidation of oxygen ions and further enhancing the stability of O-redox.The modified LRMO exhibites a remarkable initial Coulombic efficiency of 91.6%,signifi-cantly surpassing that of the original LRMO(74.4%).Furthermore,the treated sample showes an impressive capacity retention rate of 91.9%after 200 cycles,accompanied by a voltage decay of merely 0.47 mV per cycle.The proposed treatment approach is straightforward and significantly improves the initial Coulombic efficiency,voltage stability,and capacity stability of LRMO cathode materials,thus holding considerable promise for the development of high-energy Li-ion batteries. 展开更多
关键词 Co-free li-rich layered oxide V-doped layered-spinel coherent layer voltage stability high initial Coulombic efficiency
下载PDF
Surface-engineering of layered LiNi_(0.815)Co_(0.15)Al_(0.035)O_2 cathode material for high-energy and stable Li-ion batteries 被引量:4
10
作者 Yugang Li Haifeng Yu +2 位作者 Yanjie Hu Hao Jiang Chunzhong Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期559-564,共6页
Surface engineering is an effective strategy to restrain the generation of rocksalt NiO phase on surface of layered LiNi0.815Co0.15Al0.035O2(NCA) primary nanoparticles, a representative Ni-rich layered oxides cathod... Surface engineering is an effective strategy to restrain the generation of rocksalt NiO phase on surface of layered LiNi0.815Co0.15Al0.035O2(NCA) primary nanoparticles, a representative Ni-rich layered oxides cathode materials. Herein, we demonstrate the kilogram-scale synthesis of few-layer reduced graphene oxide(rGO) conformably coated NCA primary nanoparticles cathode materials by a mechanical wet ball-milling strategy. The lightening rGO coating layer effectively avoids the direct contact of electrolyte and NCA with rapid electrons transfer. As a result, the as-obtained NCA@rGO hybrids with only 1.0 wt% rGO content can deliver a high specific capacity(196 mAh g-1 at 0.2 C) and fast charge/discharge capability(127 mAh g-1 at 5 C), which is much higher than the corresponding NCA nanoparticles(95 mAh g-1 at 5 C). Even after100 cycles at 1 C, 91.7% of initial reversible capacity is still maintained. Furthermore, a prismatic pouch cell(240 mAh) is also successfully assembled with the commercial graphite anode. 展开更多
关键词 layered materials CATHODE Reduced graphene oxide Energy density Li-ion batteries
下载PDF
Thermodynamically Revealing the Essence of Order and Disorder Structures in Layered Cathode Materials 被引量:4
11
作者 ZHENG Ze WENG Mou-Yi +3 位作者 YANG Lu-Yi HU Zong-Xiang CHEN Zhe-Feng PAN Feng 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2019年第12期2020-2026,共7页
Layered transition metal(TM) oxides are one of the most widely used cathode materials in lithium-ion batteries. The atomic configuration in TM layer of these materials is often known to be random when multiple TM elem... Layered transition metal(TM) oxides are one of the most widely used cathode materials in lithium-ion batteries. The atomic configuration in TM layer of these materials is often known to be random when multiple TM elements co-exist in the layer(e.g. Ni, Co and Mn). By contrast, the configuration tends to be ordered if the elements are Li and Mn. Here, by using special quasi-random structures(SQS) algorithm, the essential reasons of the ordering in a promising Li-rich Mn-based cathode material Li2MnO3 are investigated. The difference of internal energy and entropy between ordered and disordered materials is calculated. As a result, based on the Gibbs free energy, it is found that Li2MnO3 should have an ordered structure in TM layer. In comparison, structures with Ni-Mn ratio of 2:1 are predicted to have a disordered TM layer, because the entropy terms have larger impact on the structural ordering than internal energy terms. 展开更多
关键词 ENTROPY special quasi-random structures(SQS) layered cathode materials Gibbs free energy
下载PDF
In-situ formation of Li_(0.5)Mn_(0.5)O coating layer through defect controlling for high performance Li-rich manganese-based cathode material 被引量:4
12
作者 Aipeng Zhu Qin Wang +7 位作者 Yin Zhang Yueyin Zhang Xiaogang He Kaipeng Wu Hao Wu Qian Wang Wenlong Cai Yun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期384-391,I0010,共9页
Li-rich layered oxide of Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)(LMNO)with a considerable specific capacity and higher voltage is regarded as a kind of promising cathode material.However,it suffers from transition metal ion dis... Li-rich layered oxide of Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)(LMNO)with a considerable specific capacity and higher voltage is regarded as a kind of promising cathode material.However,it suffers from transition metal ion dissolution and oxygen escape that leads to rapid capacity decay.In addition,the poor lithium-ion diffusion kinetics gives rise to unsatisfied rate performance.Herein,a stable layer of Li_(0.5)Mn_(0.5)O(LMO)out of LMNO is in-situ constructed through acetic passivation and following calcination process.The generated defect structure in the composite material exhibits fast ion diffusion kinetics and the produced LMO layer can stabilize the substructure,resulting in elevated cycling stability and rate performance.In specific,the LMNO@LMO material exhibits a high initial coulombic efficiency of 80.3%and remarkable capacity retention of 80.7%after 200 cycles at 1 C.Besides,the composite material reveals prominent rate performance that delivers discharge capacities of 158 and 131 m Ah g^(-1) at 5 and 10 C,respectively.At last,this study presents a new approach to optimizing the Li-rich cathode materials. 展开更多
关键词 Defect Interfacial stability Li_(0.5)Mn_(0.5)O li-rich layered oxides Lithium-ion batteries
下载PDF
Recent progress and prospective on layered anode materials for potassium-ion batteries 被引量:3
13
作者 Ke Guo Wei Wang Shuqiang Jiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第5期1037-1052,共16页
Potassium-ion batteries(PIBs),also known as“novel post-lithium-ion batteries,”have promising energy storage and utilization prospects due to their abundant and inexpensive raw materials.Appropriate anode materials a... Potassium-ion batteries(PIBs),also known as“novel post-lithium-ion batteries,”have promising energy storage and utilization prospects due to their abundant and inexpensive raw materials.Appropriate anode materials are critical for realizing high-performance PIBs because they are an important component determining the energy and power densities.Two-dimensional(2D)layered anode materials with increased interlayer distances,specific surface areas,and more active sites are promising candidates for PIBs,which have a high reversible capacity in the energetic pathway.In this review,we briefly summarize K+storage behaviors in 2D layered carbon,transition metal chalcogenides,and MXene materials and provide some suggestions on how to select and optimize appropriate 2D anode materials to achieve ideal electrochemical performance. 展开更多
关键词 potassium-ion battery layered materials carbon transition metal chalcogenides MXene materials
下载PDF
Intercalation Assembly Method and Intercalation Process Control of Layered Intercalated Functional Materials 被引量:5
14
作者 李凯涛 王桂荣 +2 位作者 李殿卿 林彦军 段雪 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期453-462,共10页
Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Labor... Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Laboratory of Chemical Resource Engineering in Beiiing University of Chemical Technology, the orinciole for the design of controlled intercalation processes in the light of tuture production processing requirements has been developed. Intercalation assembly methods and technologies have been invented to control the intercalation process for preparing layered intercalated materials with various structures and functions. 展开更多
关键词 layered intercalated structure functional material intercalation assembly methods intercalation process
下载PDF
2D materials modulating layered double hydroxides for electrocatalytic water splitting 被引量:5
15
作者 Jinling Cheng Dingsheng Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第6期1380-1398,共19页
Exploring highly efficient electrochemical water splitting catalysts has recently attracted extensive research interest from both fundamental researches and practical applications.Transition metal‐based layered doubl... Exploring highly efficient electrochemical water splitting catalysts has recently attracted extensive research interest from both fundamental researches and practical applications.Transition metal‐based layered double hydroxides(LDHs)have been proved to be one of the most efficient materials for oxygen evolution reaction(OER),however,still suffered from low conductivity and sluggish kinetics for hydrogen evolution reaction(HER),which largely inhibited the overall water splitting efficiency.To address this dilemma,enormous approaches including doping regulation,intercalation tuning and defect engineering are therefore rationally designed and developed.Herein,we focus on the recent exciting progress of LDHs hybridization with other two‐dimensional(2D)materials for water splitting reactions,not barely for enhancing OER efficiency but also for boosting HER activity.Particularly,the structural features,morphologies,charge transfer and synergistic effects for the heterostructure/heterointerface that influence the electrocatalytic performance are discussed in details.The hybrid 2D building blocks not only serve as additional conductivity and structural supported but also promote electron transfer at the interfaces and further enhance the electrocatalytic performance.The construction and application of the nanohybrid materials will guide a new direction in developing multifunctional materials based on LDHs,which will contribute to energy conversion and storage. 展开更多
关键词 layered double hydroxide 2D materials HYBRIDIZATION Synergistic effect Electrocatalytic water splitting
下载PDF
Synthesis and Characterization of Novel Layered Lithium Sodium Silicate (Silinaite) and the Mesoporous Materials from Silinaite 被引量:1
16
作者 Chun Hui ZHOU Hong Qiang GUO Hui Jun CAO Xiao Nian LI Zhong Hua GE Jie LI 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第4期525-528,共4页
Novel layered silinaite has been synthesized using an aqueous mixture of water glass, LiOH and NaOH under hydrothermal crystallization. Subsequently transformation of silinaite into mesoporous materials (SDM) was ac... Novel layered silinaite has been synthesized using an aqueous mixture of water glass, LiOH and NaOH under hydrothermal crystallization. Subsequently transformation of silinaite into mesoporous materials (SDM) was achieved at mild condition using cetyltfimethylammonium bromide as structure-directing agents. The resulting samples were characterized by XRD, SEM, FTIR nitrogen adsorption-desorption isotherms and catalytic performance in bulky molecular involved reaction. The results revealed that synthesized mesoporous materials derived from the silinaite exhibited an ordered hexagonal crystal structure with average pore diameter 2.7 nm and BET surface area 817m^2/g. The SDM-supported ZnCl2 catalyst, prepared by impregnationevaporation method, retained the mesoporous structure and showed high selectivity in alkylation of benzene with benzyl chloride. 展开更多
关键词 Silinaite mesoporous materials layered solid CATALYSTS characterization.
下载PDF
Recent Progress and Prospects of Layered Cathode Materials for Potassium-ion Batteries 被引量:3
17
作者 Jiaying Liao Yu Han +3 位作者 Zhuangzhuang Zhang Jingyi Xu Jianbo Li Xiaosi Zhou 《Energy & Environmental Materials》 SCIE CSCD 2021年第2期178-200,共23页
Layered materials with two-dimensional ion diffusion channels and fast kinetics are attractive as cathode materials for secondary batteries.However,one main challenge in potassium-ion batteries is the large ion size o... Layered materials with two-dimensional ion diffusion channels and fast kinetics are attractive as cathode materials for secondary batteries.However,one main challenge in potassium-ion batteries is the large ion size of K^(+),along with the strong K^(+)-K^(+)electrostatic repulsion.This strong interaction results in initial K deficiency,greater voltage slope,and lower specific capacity between set voltage ranges for layered transition metal oxides.In this review,a comprehensive review of the latest advancements in layered cathode materials for potassium-ion batteries is presented.Except for layered transition metal oxides,some polyanionic compounds,chalcogenides,and organic materials with the layered structure are introduced separately.Furthermore,summary and personal perspectives on future optimization and structural design of layered cathode materials are constructively discussed.We strongly appeal to the further exploration of layered polyanionic compounds and have demonstrated a series of novel layered structures including layered K_(3)V_(2)(PO_(4))_(3). 展开更多
关键词 CATHODE layered material potassium-ion battery structural regulation
下载PDF
Recent advances in the electrochemistry of layered post-transition metal chalcogenide nanomaterials for hydrogen evolution reaction 被引量:2
18
作者 Yong Wang Yang Zhao +1 位作者 Xiang Ding Liang Qiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期451-479,共29页
Layered two-dimensional(2 D)materials have received tremendous attention due to their unique physical and chemical properties when downsized to single or few layers.Several types of layered materials,especially transi... Layered two-dimensional(2 D)materials have received tremendous attention due to their unique physical and chemical properties when downsized to single or few layers.Several types of layered materials,especially transition metal dichalcogenides(TMDs)have been demonstrated to be good electrode materials due to their interesting physical and chemical properties.Apart from TMDs,post-transition metal chalcogenides(PTMCs)recently have emerged as a family of important semiconducting materials for electrochemical studies.PTMCs are layered materials which are composed of post-transition metals raging from main group IIIA to group VA(Ga,In,Ge,Sn,Sb and Bi)and group VI chalcogen atoms(S,selenium(Se)and tellurium(Te)).Although a large number of literatures have reviewed the electrochemical and electrocatalytic applications of TMDs,less attention has been focused on PTMCs.In this review,we focus our attention on PTMCs with the aim to provide a summary to describe their fundamental electrochemical properties and electrocatalytic activity towards hydrogen evolution reaction(HER).The characteristic chemical compositions and crystal structures of PTMCs are firstly discussed,which are different from TMDs.Then,inherent electrochemistry of PTMCs is discussed to unveil the well-defined redox behaviors of PTMCs,which could potentially affect their efficiency when applied as electrode materials.Following,we focus our attention on electrocatalytic activity of PTMCs towards HER including novel synthetic strategies developed for the optimization of their HER activity.This review ends with the perspectives for the future research direction in the field of PTMC based electrocatalysts. 展开更多
关键词 Post-transition metal chalcogenide layered material Chemical composition Crystal structure Inherent electrochemistry Hydrogen evolution
下载PDF
Synthesis and electrochemical characterization of layered Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 cathode materialfor Li-ion batteries 被引量:3
19
作者 禹筱元 胡国荣 +2 位作者 彭忠东 肖劲 刘业翔 《中国有色金属学会会刊:英文版》 EI CSCD 2005年第6期1425-1428,共4页
Layered LiNi1/3Co1/3Mn1/3O2 materials were synthesized using a nickel-cobalt-manganese carbonate precursor obtained by chemical co-precipitation. The [Ni1/3Co1/3Mn1/3]CO3 precursor and the LiNi1/3Co1/3Mn1/3O2 powders ... Layered LiNi1/3Co1/3Mn1/3O2 materials were synthesized using a nickel-cobalt-manganese carbonate precursor obtained by chemical co-precipitation. The [Ni1/3Co1/3Mn1/3]CO3 precursor and the LiNi1/3Co1/3Mn1/3O2 powders were characterized by X-ray diffraction(XRD) and scanning electron micrograph(SEM). The SEM analysis shows that these particles possess uniform and spherical morphology. The electrochemical properties of the (LiNi1/3-)(Co1/3Mn1/3O2) cathode material for rechargeable lithium-ion batteries such as the galvanostatic charge-discharge performance and cyclic voltammetry(CV) were measured. The results show that an initial discharge capacity of 190.29mA·h·g-1 is obtained in the voltage range of 2.54.6V and at a current rate of 0.1C at 25℃.The discharge capacity increases linearly with the increase of the upper cut-off voltage limit. 展开更多
关键词 锂离子电池 电极材料 电化学性能 合成 分层结构
下载PDF
Intercalation Assembly and Chemical Product Engineering of Layered Intercalated Functional Materials Based on Efficient Utilization of Magnesium Resources in Salt Lakes
20
作者 LIN Yanjun NING Bo +1 位作者 LI Kaitao WU Qin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第S1期347-349,共3页
1 Introduction Magnesium salts are very important by-product of salt lake industry in West China.Nearly 200 million cubic meters of waste brine are released to the environment
关键词 layered intercalated functional materials Intercalation assembly chemical product engineering magnesium resources salt lakes
下载PDF
上一页 1 2 138 下一页 到第
使用帮助 返回顶部