期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Synthesis and Absorption Properties of New Na Specific Adsorbent Li_(1+x)Al_xTi_(2-x)(PO_4)_3 被引量:2
1
作者 Jian Zhi SUN Xiao Chuan DENG +2 位作者 Shu Bin WEI Fa Qiang LI Pei Hua MA 《Chinese Chemical Letters》 SCIE CAS CSCD 2005年第10期1401-1404,共4页
A new kind of adsorbent Li(1+x)AlxTi(2-x)(PO4)3 was synthesized by solid state reaction method. The influence of the content of doping aluminum on the adsorbent Li(1+x)AlxTi(2-x)(PO4)3 was investigated b... A new kind of adsorbent Li(1+x)AlxTi(2-x)(PO4)3 was synthesized by solid state reaction method. The influence of the content of doping aluminum on the adsorbent Li(1+x)AlxTi(2-x)(PO4)3 was investigated by XRD, while the morphology of powders was observed by SEM. The investigation of the adsorption properties showed that the adsorbent can selectively adsorb sodium with the adsorption capacity of 11.76 mg/g. The optimum conditions of adsorption are at pH 10.0-11.0 in LiCl solution. 展开更多
关键词 li(1+x)AlxTi(2-x)(po4)3 adsorbent separation.
下载PDF
First-principles insight into the entanglements between superionic diffusion and Li/Al antisite in Al-doped Li1+xAlxGe2–x(PO4)3(LAGP)
2
作者 JIANG ChangKun LU Xia CAO DaPeng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第9期1787-1794,共8页
As an ion conductor, the Al-doped Li1+xAlxGe2-x(PO4)3(LAGP) demonstrates the superionic Li diffusion behavior, however,without the convinced verifications. In this context, the density functional theory(DFT) calculati... As an ion conductor, the Al-doped Li1+xAlxGe2-x(PO4)3(LAGP) demonstrates the superionic Li diffusion behavior, however,without the convinced verifications. In this context, the density functional theory(DFT) calculations are employed to clarify the structural origin of the fast Li ion migration kinetics in LAGP solid electrolytes. The calculated results show that doping of Al leads to an emerging high-energy 36 f Li site, which plays an important role in promoting the Li diffusion and can largely lower the Li ion diffusion energy barrier. Moreover, the Li/Al antisite defect is investigated firstly, with which the Li ions are excited to occupy a relatively high energy site in LAGP. The obvious local structural distortion by Li/Al antisite results in the coordination change upon Li diffusion(lattice field distortion), which facilitates the Li diffusion significantly and is probably the main reason to account for the superionic diffusion phenomenon. Therefore, the occupation of Li at high-energy sites should be an effective method to establish the fast Li diffusion, which implies a rewarding avenue to build better Li-ion batteries. 展开更多
关键词 li1+xalxge2–x(po4)3(lagp) li/Al antisite superionic conductor first-principles calculations li ion batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部