期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
锂离子电池Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08)O_2正极材料的合成及电化学性能 被引量:2
1
作者 陶伟 李小雨 +1 位作者 朱彦荣 诸荣孙 《有色金属工程》 CAS CSCD 北大核心 2016年第4期9-12,共4页
采用溶胶凝胶法成功制备了锂离子电池Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08)O_2正极材料,利用扫描电镜(SEM)、循环伏安(CV)及充放电等测试手段研究了该材料的微观形貌和电化学性能。SEM表征结果表明,合成的Li1.2Mn0.56Ni0.16Co0.08O2粒... 采用溶胶凝胶法成功制备了锂离子电池Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08)O_2正极材料,利用扫描电镜(SEM)、循环伏安(CV)及充放电等测试手段研究了该材料的微观形貌和电化学性能。SEM表征结果表明,合成的Li1.2Mn0.56Ni0.16Co0.08O2粒径约为2μm,呈长片层状结构。CV测试表明,经过首次循环后,Li2Mn O3组分得到活化,并转变为具有电化学活性的Li Mn O2,造成了锂离子的不可逆损失。充放电测试表明,在0.2 C倍率循环时,Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08)O_2材料的首次放电比容量为199.7 m A·h/g。倍率性能测试表明,在经过36次充放电循环后,材料仍有很高的容量保持率。 展开更多
关键词 锂离子电池 正极材料 li1.2mn0.56ni0.16co0.08O2 电化学性能
下载PDF
Synthesis, characterization and electrochemical performance of AlF_3-coated Li_(1.2)(Mn_(0.54)Ni_(0.16)Co_(0.08))O_2 as cathode for Li-ion battery 被引量:2
2
作者 李艳 刘开宇 +2 位作者 吕美玉 魏来 钟剑剑 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3534-3540,共7页
Li-rich layered transitional metal oxide Li1.2(Mn0.54Ni0.16Co0.08)O2 was prepared by sol-gel method and further modified by AlF3 coating via a wet process. The bare and AlF3-coated Li1.2(Mn0.54Ni0.16Co0.08)O2 samples ... Li-rich layered transitional metal oxide Li1.2(Mn0.54Ni0.16Co0.08)O2 was prepared by sol-gel method and further modified by AlF3 coating via a wet process. The bare and AlF3-coated Li1.2(Mn0.54Ni0.16Co0.08)O2 samples were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), and high resolution transmission electron microscope(HRTEM). XRD results show that the bare and AlF3-coated samples have typical hexagonal α-Na Fe O2 structure, and AlF3-coated layer does not affect the crystal structure of the bare Li1.2(Mn0.54Ni0.16Co0.08)O2. Morphology measurements present that the AlF3 layer with a thickness of 5-7 nm is coated on the surface of the Li1.2(Mn0.54Ni0.16Co0.08)O2 particles.Galvanostatic charge-discharge tests at various rates show that the AlF3-coated Li1.2(Mn0.54Ni0.16Co0.08)O2 has an enhanced electrochemical performance compared with the bare sample. At 1C rate, it delivers an initial discharge capacity of 208.2 m A·h/g and a capacity retention of 72.4% after 50 cycles, while those of the bare Li1.2(Mn0.54Ni0.16Co0.08)O2 are 191.7 m A·h/g and 51.6 %, respectively. 展开更多
关键词 lithium-ion battery li1.2(mn0.54ni0.16co0.08)O2 AlF3 surface coating capacity retention
下载PDF
富锂层状氧化物Li[Li_(0.2)Mn_(0.56)Ni_(0.16)Co_(0.08)]O_2的Li_2O-2B_2O_3包覆与性能研究
3
作者 兰青 谢清亮 刘开宇 《龙岩学院学报》 2016年第5期8-15,共8页
采用尿素燃烧法制备多孔的Li[Li0.2Mn0.56Ni0.16Co0.08]O2微球,再利用化学沉淀法对微球进行Li2O-2B2O3表面包覆,研究不同Li2O-2B2O3包覆量对材料电化学性能的影响。采用X-射线衍射(XRD)、X-射线光电子能谱(XPS)和扫描电子显微镜(SE... 采用尿素燃烧法制备多孔的Li[Li0.2Mn0.56Ni0.16Co0.08]O2微球,再利用化学沉淀法对微球进行Li2O-2B2O3表面包覆,研究不同Li2O-2B2O3包覆量对材料电化学性能的影响。采用X-射线衍射(XRD)、X-射线光电子能谱(XPS)和扫描电子显微镜(SEM)对材料的微观组织结构及表面特性进行了表征,结果表明:Li2O-2B2O3被均匀包覆在微球表面,包覆层没有改变材料的晶格结构。电化学测试结果表明:3.0 wt%Li2O-2B2O3包覆量大大提高了材料的首次库伦效率和高倍率性能,相比于未包覆样品,在0.1 C倍率和2.0-4.7V电压区间下,材料的首次库伦效率由81.17%提高到84.14%;在5 C倍率下,材料的放电比容量由66.30 mAh/g提高到81.56 mAh/g。 展开更多
关键词 锂离子电池 正极材料 li[li0.2mn0.56ni0.16co0.08]O2 表面包覆
下载PDF
Enhanced electrochemical performance of Li-rich low-Co Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)Al_xO_2(0≤x≤0.08) as cathode materials 被引量:3
4
作者 伊廷锋 韩啸 +1 位作者 杨双瑗 朱彦荣 《Science China Materials》 SCIE EI CSCD 2016年第8期618-628,共11页
Layered Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)Al_xO_2(0 ≤ x ≤(0.08)) cathode materials were successfully synthesized by a sol-gel method. X-ray diffraction and the refinement data indicate that all materials have typ... Layered Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)Al_xO_2(0 ≤ x ≤(0.08)) cathode materials were successfully synthesized by a sol-gel method. X-ray diffraction and the refinement data indicate that all materials have typical α-NaFeO_2 structure with R-3m space group, and the a-axis has almost no change, but there is a slight decrease in the c lattice parameter as well as the cell volume. Scanning electron microscopy and high resolution transmission electron microscopy prove that all the samples have uniform particle size of about 200–300 nm and smooth surface. The energy-dispersive X-ray spectroscopy mapping shows that aluminum has been homogeneously doped in the Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08)O_2 cathode material. The cyclic voltammetry and electrochemical impedance spectroscopy reveal that appropriate Al-doping contributes to the reversible lithium-ion insertion and extraction, and then reduces the electrochemical polarization and charge transfer resistance. Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)Al_xO_2(x = 0.05)shows the lowest charge transfer resistance and the highest lithium-ion diffusion coefficient among all the samples. The Li-rich electrodes with low-level Al doping shows a much higher discharge capacity than the pristine one, especially the Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)AlxO_2(x = 0.05) sample, which exhibits greater rate capacity and better fast charge-discharge performance than the other samples. Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)Al_xO_2(x = 0.05) also exhibits higher discharge capacity than the pristine one at each cycle at 55°C. These results clearly indicate that the high rate capacity together with a good high rate cycling performance and high-temperature performance of the low-Co Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)Al_xO_2(x=0.05) is a promising alternative to next-generation lithium-ion batteries. 展开更多
关键词 liTHIUM-ION battery li1.2mn0.56ni0.16co0.08-xalxo2 cycling stability fast charge-discharge PERFORMANCE high-temperature PERFORMANCE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部