The composite quasi solid state electrolytes(CQSE) is firstly synthesized with quasi solid state electrolytes(QSE) and lithium-ion-conducting material Li1.4Al0.4Ti1.6(PO4)3(LATP), and the QSE consists of [LiG4...The composite quasi solid state electrolytes(CQSE) is firstly synthesized with quasi solid state electrolytes(QSE) and lithium-ion-conducting material Li1.4Al0.4Ti1.6(PO4)3(LATP), and the QSE consists of [LiG4][TFSI] with fumed silica nanoparticles. Compared with LATP, CQSE greatly improves the interface conductance of solid electrolytes. In addition,it has lower liquid volume relative to QSE. Although the liquid volume fraction of CQSE is droped to 60%, its conductivity can also reach 1.39 × 10^-4S/cm at 20℃. Linear sweep voltammetry(LSV) is conducted on each composite electrolyte.The results show the possibility that CQSE has superior electrochemical stability up to 5.0 V versus Li/Li^+1. TG curves also show that composite electrolytes have higher thermal stability. In addition, the performance of Li/QSE/Li Mn2O4 and Li/CQSE/Li Mn2O4 batteries is evaluated and shows good electrochemical characteristics at 60℃.展开更多
文摘以溶胶凝胶法合成的高纯Li_(1.4)Al_(0.4)Ti_(1.6)(PO_4)_3(LATP)纳米晶体粉末为原料,通过流延法成膜,在950℃下煅烧5 h合成LATP固态电解质片;对其进行环氧树脂改性后,能量色散X射线光谱元素图像表明环氧树脂完全浸入LATP内部,可以有效防止水渗透.研究发现流延法合成的LATP固态电解质在25℃?C时电导率高达8.70×10^(-4)S·cm^(-1)、活化能为0.36 eV、相对密度为89.5%.经过环氧树脂改性后电导率仍高达3.35×10-4S·cm-1、活化能为0.34 e V、相对密度为93.0%.高电导隔水的环氧树脂改性LATP固态电解质可作为锂金属保护薄膜用于新型高比容量电池.
基金supported by the National Natural Science Foundation of China(Grant Nos.52315206 and 51502334)the Funds from the Ministry of Science and Technology of China(Grant No.2016YFB0100100)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09010000)the Foundation from Beijing Municipal Science&Technology Commission(Grant No.D171100005517001)
文摘The composite quasi solid state electrolytes(CQSE) is firstly synthesized with quasi solid state electrolytes(QSE) and lithium-ion-conducting material Li1.4Al0.4Ti1.6(PO4)3(LATP), and the QSE consists of [LiG4][TFSI] with fumed silica nanoparticles. Compared with LATP, CQSE greatly improves the interface conductance of solid electrolytes. In addition,it has lower liquid volume relative to QSE. Although the liquid volume fraction of CQSE is droped to 60%, its conductivity can also reach 1.39 × 10^-4S/cm at 20℃. Linear sweep voltammetry(LSV) is conducted on each composite electrolyte.The results show the possibility that CQSE has superior electrochemical stability up to 5.0 V versus Li/Li^+1. TG curves also show that composite electrolytes have higher thermal stability. In addition, the performance of Li/QSE/Li Mn2O4 and Li/CQSE/Li Mn2O4 batteries is evaluated and shows good electrochemical characteristics at 60℃.